期刊文献+

关于一个具偏差变元的Rayleigh方程的周期解问题

On Existence of Periodic Solutions for Rayleigh Equation with a Deviating Argument
下载PDF
导出
摘要 研究了一类具偏差变元的Rayleigh方程:x″(t)+f(x′(t))+g(t,x(t-τ(t)))=p(t)周期解的存在性问题,得到了一些新的结果.所获结果改进和推广了已有文献中的相关结论. Existence of periodic solutions for a kind of non-autonomous Rayleigh equation x″(t)+f(x′(t))+g(t,x(t-τ(t)))=p(t) is studied, and some new results are obtained. Our work generalizes and improves the known results in the literature.
作者 刘建平
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2008年第4期40-43,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10771215)
关键词 RAYLEIGH方程 周期解 先验估计 Rayleigh equations periodic solution priori estimate
  • 相关文献

参考文献9

  • 1GAINS R E, MAWHIN J L. Coincidence degree and nonlinear differential equations Lecture Notes in Math[ M]. New York: Springer, 1977.
  • 2DEIMLING K. Nonlinear functional analysis [ M ]. New York: Springer, 1985.
  • 3WANG G Q, CHENG S S. A priori bounds for periodic solutions of a delay Rayleigh equation[J]. Appl Math Lett, 1999,12: 41-44.
  • 4LU S P, GE W G, ZHENG Z X. Periodic solutions for a kind of Raleigh equation with a deviating argument ( in Chinese) [J]. Acta Math Sinica, 2004 ,47 (2) :299-304.
  • 5LU S P, GE W G, ZHENG Z X. Periodic solutions for a kind of Rayleigh equation with a deviating argument[J]. Appl Math Lett, 2004,(17) :443-449.
  • 6LU S P, GE W G. Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument[J]. Nolinear Analysis, 2004, (56) :501-514.
  • 7LU SHI-PING, GE WEI-GAO. On the cxiastence of periodic solutions to a kind of Rayleigh equation with a deviating argument [ J ]. Adavances in Mathematics, 2004,34 (4) :425-432.
  • 8ZHOU YINGGAO. On existence of periodic solutions of Rayleigh equation of retarded type [ J ]. Journal of Computational and Applied Mathematics, 2007,1 : 1-5.
  • 9LIU BINGWEN, HUANG LIHONG. Periodic solution for a kind of Rayleigh equation with a deviating argument[J]. J Math Anal Appl, 2006,7:676-687.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部