摘要
目的在于简化一类不定方程特解的求法.方法利用无穷递降法.结果给出了不定方程z2+2(2xy)2=(x2-y2+2xy)2的正整数解.结论不定方程z2+2(2xy)2=(x2-y2+2xy)2有正整数解(x,y,z)=(3,2,1)及(x,y,z)=(1469,84,2372159).
Objective To simplify the proving approach of particular integral of a kind of indefinite equation. Methods With the method of infinite descent. Results Positive integer solutions of the indefinite equation z^2+2(2xy)^2=(x^2-y^2+2xy)^2 is put forward. Conclusion This equation has its positive integer solutions, for example, A(x,y,z) =(3,2,1) or (x,y,z) = (1469,84,2372159).
出处
《河北北方学院学报(自然科学版)》
2009年第1期14-15,共2页
Journal of Hebei North University:Natural Science Edition
关键词
不定方程
无穷递降法
正整数解
方程式的变形
既约分数
二次方程根的判别式
indefinite equation
method of infinite descent
positive integer solutions
transformation of equation
irreducible fraction
discriminant of quadratic equations