期刊文献+

利用广义不确定关系计算G-H-S黑洞的熵

Computing Entropy of G-H-S Black Hole with Generalized Uncertainty Relation
下载PDF
导出
摘要 目的解决黑洞熵的发散问题.方法利用广义不确定关系计算量子态数目,进而计算G-H-S黑洞的熵.结果此方法不必引入截断因子,就避免了熵的发散问题,而且得到了黑洞熵与其视界面积成正比的结果.结论利用广义不确定关系计算黑洞的熵,不必引入截断因子,就可避免熵的发散问题. Objective To solve the divergence of black hole's entropy. Methods Using the generalized uncertainty relation, the number of quantum states is calculated, and the entropy of G-H-S black hole is obtained. Results The divergence is removed by using this method without any cutoff, meanwhile the conclusion that the entropy of a black hole is proportional to the area of its event horizon is got. Conclusion Using the generalized uncertainty relation to calculate the entropy of a black hole, the divergence will be resolved.
作者 牛振风
出处 《河北北方学院学报(自然科学版)》 2009年第1期28-31,共4页 Journal of Hebei North University:Natural Science Edition
基金 张家口市科技局资助项目(0701014B) 河北北方学院资助项目(2007005)
关键词 黑洞 广义不确定关系 BRICK-WALL模型 black hole entropy generalized uncertainty relation brick-wall model
  • 相关文献

参考文献2

二级参考文献13

  • 1[1]Bekenstein JD. Black holes and entropy [J]. Phys Rev, 1973, D7: 2 333
  • 2[2]Hawking SW. Particle creation by black hole [J]. Commun Math Phys, 1975, 43 (1): 199
  • 3[3]'t Hooft G. On the quantum structure of a black hole [J]. Nucl Phys, 1985, B256: 727
  • 4[4]Chang LN. The effect of the minimal length uncertainty relation on the density of states and the cosmological contant problem [J]. Phys Rev, 2002, D65: 125 025
  • 5[5]Li X. Black hole entropy without brick-walls [J]. Phys Lett, 2002, B540: 9
  • 6[8]Li X, Zhao Z. Entropy of Vaidya-de Sitter spacetime [J]. Chin Phys Lett, 2001, 18 (2): 463
  • 7M.K. Parikh and F. Wilczek, Phys. Rev. Lett. 85 (2000)5042.
  • 8M.K. Parikh, "Energy Conservation and Hawking Radiation" , hep-th/0402166.
  • 9M.K. Parikh, Int. J. Mod. Phys. D 13 (2004) 2351, hep-th/0405160.
  • 10Jing-Yi Zhang and Zheng Zhao, Nucl. Phys. B 725 (2005)173.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部