期刊文献+

薄壁件加工变形控制快速仿真平台开发 被引量:12

Fast simulation platform on machining deflection control of thin-walled workpiece
下载PDF
导出
摘要 为控制薄壁件装夹变形和加工变形,建立了集装夹优化、加工变形预测、切削参数优化及误差补偿功能为一体的快速仿真平台。在平台实现中,装夹方案的优化采用基于形位公差控制的方法,通过多种装夹方案的比较,确定优化方案。加工变形预测时考虑了前一层变形对后一层切削深度的影响,并使切削力和加工变形达到动态平衡。为获得优化切削参数,建立了以变形控制为目标的优化模型,采用有限元法计算加工变形,采用遗传算法求解优化模型。为解得优化补偿量,仿真时考虑了变形与力的耦合效应。完成了基于ABAQUS的快速仿真平台开发。以镜座零件为例进行仿真,求得了优化的装夹方案和切削参数,验证了平台的可行性。 In order to control machining deflection force-induced of thin-walled workpiece, a fast simulation platform was introduced which integrated fixture optimization, deflection prediction, cutting parameters optimization and error compensation. In its implementation, various clamping schemes were compared based on error control and the optimal scheme was determined. The influence of machining deformation of the previous layer on nominal cutting depth of current layer was considered to achieve a dynamic equilibrium between the cutting force and deflection. To obtain optimal cutting parameters, an optimization model was proposed to reduce the degree of deformation. The finite element method was used to analyze the deformation and a genetic algorithm was developed to solve the optimization model. Compensation optimization by taking the coupling of deflection and machining force into account was realized to obtain the compensation values. The fast simulation platform based on ABAQUS was implemented and a specular seat was simulated. The simulation results showed that the platform was feasible to obtain optimal schemes or parameters.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第2期321-327,共7页 Computer Integrated Manufacturing Systems
基金 总装预研资助项目(51318020202)~~
关键词 仿真平台 装夹优化 变形预测 切削参数 有限元 薄壁件 simulation platform fixturing optimization deflection prediction cutting parameters finite element thin walled workpiece
  • 相关文献

参考文献15

  • 1KULANKARA K, SATYANARAYANA S, MELKOTE S N. Iterative fixture layout and clamping force optimization u sing the genetic algorithm[J]. Journal of Manufacturing Science and Engineering, 2002,124 ( 1 ) : 119-125.
  • 2周孝伦,张卫红,秦国华,张二亮.基于遗传算法的夹具布局和夹紧力同步优化[J].机械科学与技术,2005,24(3):339-342. 被引量:33
  • 3CHEN Weifang, NI Lijun, XUE Jianbin. Deformation control through fixture layout design and clamping force optimization [J].International Journal of Advanced Manufacturing Tech nology, 2008,38(9/10) 1860-867.
  • 4康永刚,王仲奇,吴建军,姜澄宇.基于实际切深的薄壁件加工变形误差的预测[J].西北工业大学学报,2007,25(2):251-256. 被引量:6
  • 5RATCHEV S, GOVENDER E, NIKOV S, et al, Force and deflection modelling in milling of low rigidity complex parts[J].Journal of Materials Processing Technology, 2003,143/144:796-801.
  • 6RATCHEV S, LIU S, HUANG W, et al. Milling error pre diction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools & Manufacture, 2004, 44(15) :1629-1641.
  • 7BOUZID W. Cutting parameter optimization to minimize production time in high speed turning[J].Journal of Materials Processing Technology, 2005, 161(3) :388-395.
  • 8FRANCI C, UROZ Z. Approach to optimization of cutting conditions by using artificial neural networks[J]. Journal of Materials Processing Technology, 2006, 173 (3) : 281-290.
  • 9SARDINAS R Q, SANTANA M R, BRINDIS E A. Genetic algorithm-based multi-bjective optimization of cutting param eters in turning processes[J].. Engineering Applications of Artificial Intelligence, 2006, 19(2) :127-133.
  • 10FRANCI C, JOZE B. Optimization of cutting process by GA approach[J]. Robotics and Computer Integrated Manufacturing, 2003,19(1/2) :113-121.

二级参考文献22

  • 1张幼桢.金属切削理论[M].北京:航空工业出版社,1987.67-76.
  • 2蒋有谅.有限元法基础[M].北京:国防工业出版社,1980.145-174.
  • 3张幼桢.金属切削原理[M].北京:航空工业出版社,1988..
  • 4Krishnakumar K, Melkote S N. Machining fixture layout optimization using the genetic algorithm[J]. Int. J. Mach. Tools & Manuf. ,2000,40(4) : 579-598.
  • 5Krishnakumar K, Satyanarayana S, Melkote S N. Iterative fixture layout and clamping force optimization using the genetic algorithm[J]. ASME J. Manuf. Sci. Eng., 2002,124(1).
  • 6Vallapuzha S, De Meter E C, Shabbir C, Khetan C. An investigation of the effectiveness of fixture layout optimization methods[J]. Int. J. Math. Tools & Manuf. , 2002,42(2).
  • 7Vallapuzha S, De Meter E C, Choudhuri S, Khetan R P. An investigation into the use of spatial coordinates for the geneticalgorithm based solution of the fixture layout optimization problem[J]. Int. J. Mach. Tools & Manuf., 2002,42(2).
  • 8Li B, Melkote S N. Fixture clamping force optimization and its impact on workpiece location accuracy[ J ]. Int. J. Adv.Maauf. Techaol. , 2001,17 : 104 - 113.
  • 9Yeh J H, Liou F W. Contact condition modelling for machining fixture setup processes[J]. Int. J. Math. Tools & Manuf. ,1999,39(5) :787 - 803.
  • 10ANSYS 5.4 Manual, Basic Analysis Procedure Guide.SYSIP. Inc, 1996

共引文献123

同被引文献77

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部