期刊文献+

基于尺寸关联和偏最小二乘回归的多工序质量分析与预测 被引量:8

Multistage manufacturing quality analysis and forecasting on dimension association and partial least square regression
下载PDF
导出
摘要 针对数字制造下多工序机械加工过程的质量控制问题,根据零件加工特征和基准,构建了基于尺寸链的工序关联矩阵,应用特征描述法存储零件工艺信息。在此基础上提出一种依据加工特征和基准的工序关联检索算法,用于提取关联工序。建立基于偏最小二乘回归方法的多工序质量分析与预测模型,通过偏最小二乘回归方法,提取对工序质量影响强的成分,以解决工艺过程中存在的自变量之间的多重相关问题,提高了多工序质量分析与预测的精度,该模型已应用于轴套零件加工过程中多工序质量的分析与预测。 To meet with the needs of multistage quality control in digital manufacturing, a process association matrix based on the dimension chain was put forward on the basis of analyzing machining features and datum. Part process information was stored by feature based description method. Based on this, a process association searching algo-rithms was designed to extract association between processes. An analysis and forecasting model for multistage man- ufacturing quality was constructed based on partial least square regression. Some principal components which were major influencing factors on multistage manufacturing quality were extracted by partial least square regression. Then, the multi-collinearity among processes could be solved and the forecasting precision of multistage manufacturing quality model could be improved greatly. Finally, a case study on bush machining was given to demonstrate the above-mentioned ideas.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第2期389-398,共10页 Computer Integrated Manufacturing Systems
基金 机械制造系统工程国家重点实验室开放课题研究基金资助项目(200602)~~
关键词 数字制造 尺寸关联 多工序制造 质量分析与预测 偏最小二乘回归 digital manufacturing dimension association multistage manufacturing quality analyzing and forecasting partial least square regression
  • 相关文献

参考文献11

二级参考文献69

  • 1姜同川.正交实验设计[M].山东科学技术出版社,1985..
  • 2Ahintas Y. Manufacturing Automation--Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design[ M ].Cambridge University Press. 2002.
  • 3Budak E, Altintas y. Prediction of milling force coefficients from orthogonal cutting data[J].Transactions of the ASME. May.1996,118:216 -224.
  • 4Armarego E J A, Whitfield R C. Computer based modeling of popular machining operations for force and power predictions[J].Annals of the CIRP, 1985,34:65-69.
  • 5Li X P, Nee A Y C. Theoretical modeling and simulation of milling forces[J]. Journal of Materials Processing Technology,1990:266-272.
  • 6Ren Changwei, Benito Fernandez. Improved CNC machining using NARMA neural systems[A].In: IEEE International Conference on Neural Networks[C]. San Francisco, CA, USA, 1993. 1865-1870.
  • 7Qin S J. Recursive PLS algorithms for adaptive data modeling[J]. Computers and Chemical Engineering,1998,22(4):503-514.
  • 8MacGregor J F,Jaeckle C,Kiparissides C. Process monitoring and diagnosis by multiblock PLS methods[J].AICHE Journal,1994,40(5):826-838.
  • 9Song Kai, Wang Haiqing, Li Ping. PLS-based optimal quality control model for TE process[A].In: IEEE International Conference on Systems, Man and Cybernetics[C]. The Hague, Netherlands, 2004.1354-1359.
  • 10Aguilera P A, Garrido Frenich, Castro H, et al. PLS and PCR methods in the assessment of coastal water quality[J].Environmental Monitoring and Assessment, 2000, 62(2):193-204.

共引文献120

同被引文献107

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部