期刊文献+

一类格心型ALE有限体积格式方法 被引量:1

A kind of cell-centered finite volume scheme in arbitrary lagrangian-eulerian method
下载PDF
导出
摘要 现在国内外流行的ALE有限体积格式基本上都基于交错网格进行格式的离散。该类格式在进行重映时,速度、密度和能量需要分别进行重映计算,效率较低,而且由于速度在网格角点,而密度、能量在网格中心,重映时会出现动能和内能不协调现象。本文在已有格心型Lagrange有限体积格式研究的基础上,结合Abgrall R.等关于格心型格式下的网格角点速度的计算方法,利用最小二乘法进行高阶插值多项式重构,构造了一类新的格心型的高精度Lagrangian有限体积格式,并结合有效的高精度ENO守恒重映方法,获得了一类格心型的高精度ALE有限体积格式。数值试验的结果说明本文的格式是有效的,高精度的,收敛的,并且避免了物理量的不协调现象。 As we know, most of finite volume schemes in ALE(Arbitrary Lagrangian-Eulerian) method are constructed on the staggered mesh, where the momentum is defined at the nodes and the other variables (density, pressure and specific internal energy) are cell-centered. When remapping of mass and momentum on the staggered mesh, this kind of scheme must use a cell-centered remapping algorithm twice that is very inefficient. Furthermore, there is inconsistent treatment of the kinetic and internal ene A new first order algorithm about computing the velocities at the nodes is introduced by Abgrall rgies. R. et al. In this paper, we reconstruct interpolating polynomials for the values of cell average by using the least square method, and from a new first order algorithm. With a high accurate remapping algorithm, series of numerical experiments are made with our arbitrary Lagrangian-Eulerian method Results show that the method is not only effective, high accurate and convergent, but also remains the consistent treatment of the kinetic and internal energies.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第1期52-58,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10601023) 计算物理重点实验室基金(2005) 南京航空航天大学青年创新基金 南京航空航天大学理学院青年创新基金资助项目
关键词 ALE方法 重映技术 交错网格 格心型格式 最小二乘法 ALE(Arbitrary Llagrangian-Eulerian) method remapping technique staggered mesh cellcentered scheme least squares method
  • 相关文献

参考文献13

  • 1MARGOLIN L G, SHASHKOV M. Remapping,recovery and repair on a staggered grid[J]. LA-UR-03-2230.
  • 2蔡庆东.非结构网格和结构网格生成及自适应软件的研制[D].北京应用物理与计算数学研究所计算物理实验室,1999.
  • 3ABGRALL R, BREIL J, MAIRE P, OVADIA J. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems[R]. Report of Institut Universitaire de France et Math'ematiques Appliqu'ees de Bordeaux, Universit'e Bordeaux I, 33 405 Talence Cedex, France, http://commun.leptensam. u-bordeaux, fr/lrc/doc/hydlagplan. gb. pdf
  • 4HIRTCW, AMSDEN AA, COOKJ L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974,14:76-85.
  • 5BENSON D J. Momentum adveetion on a staggered mesh[J]. Journal of Computational Physics, 1992, 11}0 : 143-162.
  • 6AMSDEN A A,RUPPEL H M,HIRT C W. SALE: A Simplified ALE Computer Program for FLuid Flow at All Speeds[R], LA-8095, Los Alamos Nation Laboratory, Los Alamos, NM, 1980.
  • 7BENSON D J. An efficient accurate, simple ALE method for nonlinear finite element programs [J].Comput Meth Appl Mech Engrg , 1989,72 : 305-350
  • 8BUDGE K G. ALE Shock Calculations Using a Stabilized Serendipity Rezoning Seheme[R]. APS Topical Conference on Shock Compression of Condensed Matter, 1991.
  • 9PEMBER R B, ANDERSON R W. A compa.rison of staggered-mesh Lagrange plus remap and cell-centered direct Eulerian Godunov schemes for Eulerian shock hydrodynamics[R]. UCRL-JC-139820(2000).
  • 10王永健,赵宁.一类二阶守恒单调重映算法[J].南京航空航天大学学报,2004,36(5):653-657. 被引量:5

二级参考文献9

  • 1王永健,赵宁.一类基于ENO插值的守恒重映算法[J].计算物理,2004,21(4):329-334. 被引量:8
  • 2Benson D J. Momentum advection on a staggered mesh [J]. J Comput Phys, 1992,100:143.
  • 3Dukowicz J K. Conservative rezoning (remapping) for general quadrilateral meshes[J]. J Comput Phys,1984,54:411~423.
  • 4Ramshaw J D. Conservative rezoning algorithm for generalized two-dimensional meshes[J]. J Comput Phys,1985, 59:193~199.
  • 5Margolin L G, Shashkov M. Second-order sign-preserving conservative interpolation(remapping) on general grids[J]. J Comput Phys, 2003,184:266~298.
  • 6蔡庆东.非结构网格和结构网格生成及自适应软件的研制[R].北京应用物理与计算数学研究所计算物理实验室,1999..
  • 7Shashkov M, Wendroff B. The repair paradigm and application to conservation laws[J]. J Comput Phys,2004,198:265~277.
  • 8王瑞利,毛明志.任意网格重映的样条逼近算法[J].计算物理,2001,18(5):429-434. 被引量:4
  • 9王瑞利.一种物理量重映方法的研究[J].数值计算与计算机应用,2002,23(4):296-302. 被引量:4

共引文献4

同被引文献6

  • 1Richtmyer R D, Morton K W. Difference Methods for Initial Value Problem[M]. Second Edition. New York: Interscienee Publishers, Wiley J and Sons, 1967.
  • 2Caramana E J,Shashkov M J. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[J]. J Comput Phys, 1998,142 : 521-561.
  • 3Bauer A L, Burton D E, Caramana E J, Loubere R, Shashkov M J ,Whalen P P. The internal consistency, stability, and accuracy of the discrete,compatible formulation of Lagrangian hydrodynamics[J]. J Comput Phys ,2006,218 : 572-593.
  • 4Shu C W,Osher S. Efficient implementation of essentially non-oscillatory shoek eapturing schemes [J]. Journal of Computational Physics, 1988, 77: 439- 471.
  • 5Shu C. W,Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1989,83:32-78.
  • 6艾丛芳,金生.基于非结构网格求解二维浅水方程的高精度有限体积方法[J].计算力学学报,2009,26(6):900-905. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部