期刊文献+

基于正交基无单元Galerkin法和非线性规划的安定分析方法 被引量:3

Shakedown analysis by using the element free Galerkin method with orthogonal basis and nonlinear programming
下载PDF
导出
摘要 基于安定分析的下限定理,用正交基无单元Galerkin法建立了交变载荷作用下理想弹塑性结构安定分析的下限计算格式。在给定载荷域的载荷角点所对应的载荷作用下,采用正交基无单元Galerkin法计算相应的虚拟弹性应力场,并且利用结构在正交基无单元Galerkin法弹塑性增量分析中平衡迭代结果计算得到自平衡应力场基矢量,然后由这些基矢量的线性组合模拟自平衡应力场。安定分析问题最终被归结为一系列未知变量较少的非线性数学规划子问题,通过复合形法求解。算例表明该方法的计算结果是令人满意的,并且对初始复合形顶点和用于构造自平衡应力场基矢量的载荷增量是非常不敏感的。 The computational formulation of lower bound shakedown analysis of structures under the action of variable loads is established by using the element free Galerkin (EFG) method with orthogonal basis. The considered structure is made up of elasto-perfectly plastic material. The stress field associated with the corners of the method with orthogonal basis. The self-equili given brium load domain can be computed by stress field is expressed by linear fictitious elastic using the EFG combination of several self-equilibrium stress basis vectors with parameters to be determined. These self-equilibrium stress basis vectors are determined by equilibrium iteration procedure during elasto-plastic incremental analysis. Through modifying the self-equilibrium stress subspace continuously, the lower bound shakedown analysis problem is finally reduced to a series of sub-problems of nonlinear programming with relatively few optimization variables. The Complex method is used to solve these nonlinear programming sub-problems. The numerical results of the solution procedure adopted herein appear to be satisfactory and rather insensitive to the choice of the initial Complex configurations and load increments used to create self-equilibrium stress basis vectors.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第1期80-86,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(19902007) 全国优秀博士论文专项基金(200025)资助项目
关键词 无单元Galerkin法 正交基 安定分析 非线性规划 复合形法 element free Galerkin method orthogonal basis shakedown analysis nonlinear programming Complex method
  • 相关文献

参考文献10

  • 1STEIN E, ZHANG G. Shakedown with nonlinear strain-hardening including structural computation using finite element method[J]. International Journal of Plasticity, 1992,8 : 1-31.
  • 2GROSS-WEEGE J. On the numerical assessment of the safety factor of elasto-plastic structures Under variable loading[J]. International Journal of Mechanical Sciences, 1997,39(4) : 417-433.
  • 3LIU Y H, ZHANG X F, CEN Z Z. Lower bound shakedown analysis by symmetric Galerkin boundary element method[J]. International Journal of Plasticity, 2005,21 : 21-42.
  • 4张晓峰,刘应华,岑章志.结构安定分析的Galerkin边界元方法[J].力学学报,2002,34(5):726-734. 被引量:2
  • 5张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742. 被引量:109
  • 6BELYTSCHKO T, KRONGAUZ Y, ORGAN D. Meshless methods: An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139: 3-47.
  • 7BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin method[J]. International Journal for Numerical Method in Engineering, 1994,37 : 229-256.
  • 8LU Y Y, BELYTSCHKO T, GU L. A new implementation of the element-free Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 1994,113 : 397-414.
  • 9张建辉,邓安福.基于正交基函数的薄板弯曲无单元法MLS导函数及其应用[J].计算力学学报,2003,20(3):355-360. 被引量:9
  • 10CARVELLI V, CEN Zhang-zhi, LIU Ying-hua. Shakedown analysis of defective pressure vessels by a kinematic approach[J]. Archive of Applied Mechanics, 1999,69: 751-764.

二级参考文献139

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3张建辉.[D].重庆:重庆建筑大学,2000.1.
  • 4Lu Y Y, Belytsehko T, Gu L. A new implementation of the element-free Galerkin method [J].Comput Methods Appl Mech Engrg, 1994, 113: 397-414.
  • 5Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int J for Num Methods in Eng,1994,37:229-256.
  • 6Belytschko T, Krongauz Y, et al. Meshless methods: An overview and recent development[J].Comput Methods Appl Mech Engrg, 1996,139 : 3-47.
  • 7Liu Y, Cen Z, Xu B. A numerical method for plastic limit analysis of 3D structure. Int J Solid & Structures,1995, 32(12): 1645~1658
  • 8Maier G, Polizzotto C. On shakedown analysis by boundary elements. In: Verba Volant, Scripta Manent (C.A. Massonet Anniversary Volume), Liege, 1984. 265~277
  • 9Panzeca T. Shakedown and limit analysis by the boundary integral equation method. Eur J Mech, A/Solids,1992, 11(5): 685~699
  • 10Martin JB. Plasticity: Foundation and General Results. Cambridge, Mass.: MIT Press, 1975

共引文献116

同被引文献36

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部