期刊文献+

拟线性三阶演化方程的初步群分类

Preliminary Group Classification of Quasi-Linear Third Order Evolution Equations
下载PDF
导出
摘要 利用古典无穷小算法、等价性变换技巧和有限维抽象李代数的分类理论,给出了一般拟线性三阶演化方程在半单和一维至四维可解李代数下不变的群分类.证明了只存在3个不等价的方程在三维单李代数下不变,而且进一步证明在所有半单李代数下不变的不等价方程只有这3个.另外,还证明了存在2个、5个2、9个和26个不等价的方程,分别在一维至四维可解李代数下不变. Group classification of quasi-linear third order evolution equations is performed by using the classical infinitesimal Lie method, the technique of equivalence transformations and the theory of classification of abstract low-dimensional Lie algebras. It is indicated that there are three equations admitting simple Lie algebras of dimension three. What' s more, all the inequivalent equations admitting simple Lie algebra are nothing but them. Furthermore,it is also shown that there exist two,five,twenly-nine and twenty-six inequivalent third order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.
出处 《应用数学和力学》 CSCD 北大核心 2009年第3期265-281,共17页 Applied Mathematics and Mechanics
基金 国家重点基础发展规划("973")资助项目(2004CB318000)
关键词 拟线性三阶演化方程 群分类 古典无穷小算法 等价群 抽象李代数 quasi-linear third order evolution equations group classification classical infinitesimal Lie method equivalence transformations group abstract Lie algebras
  • 相关文献

参考文献32

  • 1Bluman G, Anco S C. Symmetry and Integration Methods for Differential Equations [ M ]. New York: Springer, 2002.
  • 2Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York:Springer, 1989.
  • 3Fushchych W I, Shtelen W M, Serov N I. Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics[ M]. Dordrecht: Kluwer, 1993.
  • 4Fushchych W I, Zhdanov R Z. Symmetries and Exact Solutions of Nonlinear Dirac Equations [ M ]. Kyiv: Naukova Ukraina, 1997.
  • 5Ibragimov N H. Transformation Groups Applied to Mathematical Physics[ M]. Dordrecht: D Reidel Publishing Co., 1985.
  • 6Ibragimov N H. Lie Group Analysis of Differential Equations-Symmetries, Exact Solutions and Conservation Laws[M]. Vol 1. Boca Raton: CRC Press, 1994.
  • 7Ibragimov N H. Elementary Lie Group Analysis and Ordinary Differential Equations [ M ]. New York: Wiley, 1999.
  • 8Olver P J. Application of Lie Groups to Differential Equations [M]. New York: Springer-Verlag, 1986.
  • 9Ovsiannikov L V. Group Analysis of Differential Equations [ M ]. New York:Academic Press, 1982.
  • 10Stephani H. Differential Equation: Their Solution Using Symmetries[M]. Cambridge: Cambridge University Press, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部