期刊文献+

Cu和Fe大变形下的性能及Cu-Fe原位复合材料的强度计算 被引量:3

Properties of Cu and Fe under large deformation and strength calculation of Cu-11.5% Fe in situ composites
下载PDF
导出
摘要 对工业纯Cu和纯Fe冷拔变形,研究大变形下性能与组织的变化。研究表明,在大变形的情况下,与退火态相比其抗拉强度、硬度和电阻率均有提高。纯Cu的抗拉强度、显微硬度和电阻率在截面真应变4.621时分别提高80.5%、42.5%和8.00%;纯Fe的抗拉强度、显微硬度和电阻率在截面真应变3.544时分别提高198.2%、54.4%和3.16%。随真应变的增大,Cu、Fe抗拉强度均明显增加,Fe表现的尤为突出。Cu的硬度和电阻率在应变增加到一定值后基本保持不变,而Fe的硬度和电阻率与抗拉强度一样始终随应变的增加而增加。用纯Cu和纯Fe在截面真应变3.544时的抗拉强度计算了Cu-11.5%Fe原位复合材料在相应变形下的抗拉强度,计算结果与测量值相符。 Cold-draw deformation for commercially pure Cu and pure Fe was carried out. Properties and microstructure of Cu and Fe under large deformation were studied. Compared with that of annealed Cu, tensile strength, microhardness and electrical resistivity of the deformed Cu at cross-section true strain 4.621 increase by 80.5%, 42.5% and 8.00%, respectively. Compared with that of annealed Fe, tensile strength, mierohardness and electrical resistivity, of the deformed Fe at cross-section true strain 3.544 increase by 198.2%, 54.4% and 3.160%, respectively. Tensile strength of Cu and Fe are obviously increase with true strain increasing, especially for Fe. Mierohardness and electrical resistivity of Cu increase rapidly with the increase of true strain under relatively smaller true strain, and then do not change under relatively larger true strain. However, mierohardness and electrical resistivity of Fe increase continuously with the increase of true strain. The tensile strength of Cu-l1.5%Fe in situ composites at true strain q = 3.544 was calculated based on the experimental result of tensile strength of pure Cu and Fe under corresponding deformation. The calculated value is consistent with the measured result.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2009年第1期15-19,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金项目(50771042) 河南省高等学校青年骨干教师资助计划项目(2005-461) 河南省自然科学基金项目(0411050100)
关键词 CU FE 大变形 抗拉强度 电阻率 原位 复合材料 Cu Fe large deformation tensile strength electrical resistivity in situ composite
  • 相关文献

参考文献12

  • 1Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Mater Chem Physi, 2003, 79( 1 ) : 81 - 86.
  • 2Ryu H J, Baik H K. Effect of thermomechanical treatment on microstructure and p roperties of Cu-base leadframe alloy[J]. Journal of Materials Science, 2000, 35: 3641- 3646.
  • 3Naotsugu I. The precipitation behaviour of Cu-Cr-Sn alloy[J]. Journal of the Japan Copper and Brass Research Association, 1985, 24:225 - 230.
  • 4JuanhuaSU,QimingDONG,PingLIU,HejunLI,BuxiKANG.Prediction of Properties in Thermomechanically Treated Cu-Cr-Zr Alloy by an Artificial Neural Network[J].Journal of Materials Science & Technology,2003,19(6):529-532. 被引量:11
  • 5孙世清.Fe-Cr纤维的组织结构与磁学性质[J].金属热处理,2006,31(4):43-45. 被引量:2
  • 6Lee K D. Effect of oxidation on the creep behaviour of copper-chromium in situ composite[J]. Composite: Part A, 2003, 34:1235 - 1244.
  • 7Leprince-Wang Y, Han K, Huang Y, et al. Microstruture in Cu-Nb microcomposites[J]. Material Science Engineering A, 2003, 315: 214-223.
  • 8葛继平,姚再起.高强度高导电的形变Cu-Fe原位复合材料[J].中国有色金属学报,2004,14(4):568-573. 被引量:27
  • 9Funkenbusch P D, Lee J K, Courtney T H. Ductile two-phase alloys: prediction of strengthening at high strains[J].Metallurgical and Materials Transactions A, 1987, 18: 1249-1251.
  • 10Verhoeven J D, Chueh S C, Gibson E D. Strength and conductivity of in situ Cu-Fe alloys[J]. Journal of Material Science, 1989, 24:1748 - 1752.

二级参考文献67

共引文献56

同被引文献20

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部