期刊文献+

含有两个方差分量的多元混合效应模型方差分量矩阵的估计 被引量:1

Estimation of Variance Components in Multivariate Mixed Linear Models with Two Variance Components
下载PDF
导出
摘要 考虑含有两个方差分量矩阵的多元混合模型,将一元混合模型下的谱分解估计推广到多元模型下.给出的方差分量矩阵的谱分解估计在均方误差意义下一致的优于ANOVA估计,最后还讨论了谱分解估计与ANOVA估计等价的条件. Multivariate mixed linear models with two variance components are considered. Spectral decomposition estimators of variance component matrix in mixed linear model are generalized to multivariate mixed linear model. The spectral decomposition estimators are structured which uniformly dominate the ANOVA estimator in multivariate case. Under some conditions, spectral decomposition estimators are equivalent to ANOVA estimators.
出处 《数学年刊(A辑)》 CSCD 北大核心 2009年第1期73-84,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金数学天元青年基金(No.10726045) 北京市属市管高等学校人才强教计划(No.05006011200702) 西南财经大学"211工程三期"统计学重点学科建设资助的项目.
关键词 多元线性混合模型 ANOVA估计 谱分解估计 Multivariate mixed linear models, ANOVA estimator, Spectraldecomposition estimator
  • 相关文献

参考文献12

  • 1Calvin J. A. and Dykstra R. L., Maximum likelihood estimation of a set of covariance matrices under Lowner order restriction with applications to balanced multivariate variance components models [J], Ann. Statist, 1991, 19(a):850-869.
  • 2Calvin J. A., Real estimation in unbalanced multiwriate variance components models using an EM algorithm [J], Biometrics, 1993, 49:691-701.
  • 3Calvin J. A. and Dykstra R. L., Least squares estimation of covariance matrices in balanced multivariate variance components model [J], J. Amer. Statist. Assoc., 1991, 86(b):388-395.
  • 4Amemiya Y., What should be done when an estimated between-group covariance matrix is not nonnegative definite [J], Amer. Statist, 1985, 39:112-117.
  • 5Sun Y. J., Sinha B. K., Rosen D. V. and Meng Q. Y., Nonnegative estimation of variance components in multivariate unbalanced mixed linear models with two variance components [J], Journal of Statistical Planning and Inference, 2003, 115:215-234.
  • 6王松桂,尹素菊.线性混合模型参数的一种新估计[J].中国科学(A辑),2002,32(5):434-443. 被引量:37
  • 7Shi J. H. and Wang S. G., The spectral decomposition of cavariance matrices for the variance components models [J], Journal of Multivariate Analysis, 2006, 97:2190-2205.
  • 8史建红,王松桂.方差分量的非负估计[J].工程数学学报,2004,21(4):623-627. 被引量:11
  • 9Mathew T. M., Sinha B. K. and Sutradhar B., Nonnegative estimation of variance components in general balanced mixed models [M]//Nonparametric Statistics and Related Topics, Saleh, ed., Amsterdam: Elsevier Science Publishers, 1992:281-295.
  • 10Mathew T. M. and Sinha B. K., Nonnegative estimation of variance components in unbalanced mixed models with two variance components [J], Journal of Multivariate Analysis, 1992, 42:77-101.

二级参考文献23

  • 1王松佳.线性模型的理论及其应用[M].合肥:安徽省教育出版社,1987..
  • 2Wang S G, Chow S C. Advanced linear models[M], Marcel Dekker Inc. New York: 1994
  • 3Lamotte L R. On nonnegative quadratic unbiased estimation of variance components[J]. J Amer Statist Assoc, 1973;68:728-730
  • 4Mathew T, Sinha B K. Nonnegative estimation of variance components in unbalanced mixed model with two variance components[J]. J Multivariate Anal, 1992;42:77-101
  • 5Kelly tR J, Mathew T. Improved nonnegative estimation of variance components in some mixed models with unbalanced data[J]. Technometrics, 1994;36:171-181
  • 6Kelly R J, Mathew T. Improved nonnegative estimation of variance components in some mixed modelswith unbalanced data[J]. Technometrics, 1994;36:171-181
  • 7Wu M X, Wang S G. On estimation of variance components in the mixed-effects models for longitudinal data. In: Proceedings of Asian Symposium on Statistics. Seoul National University. 2002. 27-38.
  • 8Wang S G, Chow S C. Advanced Linear Model. New York: Marcel Dekker, 1994.
  • 9Baltagi B H. Econometric analysis of Panel data. New York: John Wiley & Son, 1995.
  • 10Graybill F A, Wortham A W. A note on uniformly best unbisased estimators for variance components. J Amer Statist Assoc, 1956, 51:266-268.

共引文献40

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部