期刊文献+

小麦AGPase4个亚基的克隆及其组织特异性表达 被引量:6

Cloning of Four Subunit Genes for Wheat AGPase and Their Transcript Levels in Different Organs
下载PDF
导出
摘要 采用RT-PCR方法从小麦品种豫教2号发育籽粒中克隆出小麦淀粉合成关键酶—AGPase的胞质型小亚基(cytosolic small subunit,SSUⅠ)、质体型小亚基(plastidial small subunit,SSUⅡ)、胞质型大亚基(cy-tosolic large subunit,LSUⅠ)和质体型大亚基(plastidial large subunit,LSUⅡ)的cDNA序列。所克隆的基因cDNA序列长度分别为1 4651、6311、941和535 bp。序列比对结果显示SSUⅠ、LSUⅠ和LSUⅡ与已往报道的大麦、小麦、玉米、水稻等相关基因的同源性较高,而SSUⅡ的cDNA序列为首次克隆,与大麦SSUⅡ相比,5'端缺失编码转移肽的一段序列,表明其可能对质体AGPase活性产生一定影响。通过半定量PCR法发现SSUⅠ与LSUⅠ在籽粒中表达量较高,而SSUⅡ和LSUⅡ在叶片中丰富表达。 cDNA sequences for cytosolic small subunit (SSUⅠ), plastidial small subunit (SSUⅡ), cytosolic large subunit (LSUⅠ) and plastidial large subunit (LSUⅡ) of AGPase, the key enzyme of starch synthesis in higher plants, were isolated from grains of Chinese wheat eultivars using RT-PCR. Sequencing showed that the cloned SSUⅠ , LSUⅠ and LSUⅡ were highly identical to the reported genes in GenBank. However, the cloned SSUⅡ lacked a long fragment at 5' unique region, different from those in barley, wheat, maize, rice, etc, implying that it could be a novel SSUⅡ. Semi-quantitative PCR indicated that the transcripts of SSUⅠ and LSUⅠ were rich in grains, but SSUⅡ and LSU Ⅱ expressed abundantly in leaves.
出处 《西北农业学报》 CAS CSCD 北大核心 2009年第1期60-64,共5页 Acta Agriculturae Boreali-occidentalis Sinica
基金 国家自然科学基金(30871472) 中国博士后科学基金(20060390773) 河南省科技重点攻关(082102140020) 河南省教育厅自然科学基金(2006210007)
关键词 小麦 AGPase亚基 克隆 组织特异性表达 Triticum aestivurn L. AGPase Cloning Transcript levels in different organs
  • 相关文献

参考文献16

  • 1Martin JM, Talbert LE, Habernicht DK, et al. Reduced amylose effects on bread and white salted noodle quality [J]. CerealChem, 2004, 81(2):188-193.
  • 2Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants[J]. J Exp. Bot, 2004, 55(406): 2131- 2145.
  • 3I.ineharger CRL, Boehlein SK, Sewell AK, et al. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit [J]. Plant Physiol, 2005, 139: 1625- 1634.
  • 4Morell MK, Bloom M, Knowles V, Preiss J. Subunit structure of spinach leaf ADPglucose pyrophosphorylase [J]. Plant Physiol, 1987, 85: 182-187.
  • 5Bahave MR, Lawrence S, Barton C, et al. Identification and molecular characterization of Shrunken-2 cDNA clones of maize [J]. Plant Cell, 1990, 2: 581-588.
  • 6Johnson PE, Patron NJ, Bottrill AR, et al. A low-starch barley mutant, Risaφ16, lacking the cytosolic small subunit of ADP-Glucose pyrophosphorylase, reveals the importance of the cytosolie isoform and the identity of the plastidial small subunit [J]. Plant Physiol, 2003, 131: 684-696.
  • 7La Cognata U, Willmitzer L, Muller-Rober B. Molecular cloning and characterization of novel isoforms potato ADP glucose pyrophosphorylase [J]. Mol Gen Genet, 1995, 246, 538-548.
  • 8Nakamura Y, Kawaguchi K. Multiple forms of ADP-glucose pyrophosphorylase of rice endosperm [J]. Physiol Plant, 1992, 84: 336-342.
  • 9Villand P, Aalen R, Olsen O A, et al. PCR amplification and sequences of eDNA clones for the small and large subunits of ADP-glucose pyropbosphorylase from barley tissues[J]. Plant Mol Biol, 1992, 19:381-389.
  • 10Sikka V K, Chor S B, Kavakli H, et al. Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase [J]. Plant Sci, 2001, 161: 461-468.

二级参考文献11

  • 1马冬云,郭天财,查菲娜,王晨阳,朱云集,王永华.种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响[J].作物学报,2007,33(3):514-517. 被引量:41
  • 2Ainsworth C, Tarvis M, Clark J (1993). Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol, 23 (1): 23-33
  • 3Bhave MR, Lawrence S, Barton C, Hannah LC (1990). Identification and molecular characterization of Shrunken-2 cDNA clones of maize. Plant Cell, 2:581-588
  • 4Burton RA, Johnson PE, Beckles KM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K (2002). Characterization of the genes encoding the cytosolic and plastidial forms of ADP-Glucose pyrophosphorylase in wheat endosperm. Plant Physiol, 130: 1464-1475
  • 5Doan DNP, Rudi H, Olsen OA (1999). The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiol, 121: 965-975
  • 6Giroux MJ, Hannah LC (1994). ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet, 243:400-408
  • 7Johnson PE, Patron N J, Bottrill AR, Dinges GR, Fahy BF, Parker ML, Waite DN, Denyer K (2003). A low-starch barley mutant, Risaφ16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol, 131:684-696
  • 8Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah C (2005). Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by integration of a cysteine in the N terminus of the small subunit. Plant Physiol, 139: 1625-1634
  • 9MorellMK, Bloom M, Knowles V, Preiss J (1987). Subunit structure of spinach leaf ADP glucose pyrophosphorylase. Plant Physiol, 85:182-187
  • 10Tetlow IJ, Morell MK, Emes MJ (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 406:2131-2145

共引文献2

同被引文献83

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部