期刊文献+

Henig Proper Efficient Points and Generalized Henig Proper Efficient Points

Henig Proper Efficient Points and Generalized Henig Proper Efficient Points
原文传递
导出
摘要 Applying the theory of locally convex spaces to vector optimization, we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular, we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this, we derive several convenient criteria for judging Henig proper efficient points. Applying the theory of locally convex spaces to vector optimization, we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular, we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this, we derive several convenient criteria for judging Henig proper efficient points.
作者 Jing Hui QIU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第3期445-454,共10页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (10571035, 10871141)
关键词 locally convex space base of a cone Henig proper efficient point generalized Henig properefficient point locally convex space, base of a cone, Henig proper efficient point, generalized Henig properefficient point
  • 相关文献

参考文献11

  • 1Henig, M. I.: Proper efficiency with respect to cones. J. Optim. Theory Appl., 36, 387-407 (1982)
  • 2Borwein, J. M., Zhuang D.: Superefficiency in vector optimization. Trans. Amer. Math. Soc.,338,105-122 (1993)
  • 3Zheng X. Y.: Proper efficiency in locally convex topological vector spaces. J. Optim. Theory Appl., 941 469-486 (1997)
  • 4Horvath, J.: Topological Vector Spaces and Distributions, Vol.1, Addison-Wesley, Massachusetts, 1966
  • 5Schaefer, H. H.: Topological Vector Spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1971
  • 6Kothe, G.: Topological Vector Spaces Ⅰ, Springer-Verlag, Berlin-Heidelberg-New York, 1969
  • 7Roberston, A. P., Robertson W. J.: Topological Vector Spaces, Cambridge University Press, Cambrifge, 1964
  • 8Jameson, G.: Ordered Linear Spaces, Springer-Verlag, Berlin, 1970
  • 9Floret K.: Weakly Compact Sets, Springer-Verlag, Berlin, 1980
  • 10Qiu, J. H.: Weakly countable compactness implies quasi-weak drop property. Studia Math., 162, 175-182 (2004)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部