期刊文献+

负DG范畴的导出范畴上的t-结构 被引量:2

A note of t-structures on derived categories of negative DG categories
原文传递
导出
摘要 作者给出了负微分分次范畴A的导出范畴D(A)上的一个自然t-结构,并证明了D(A)与由该t-结构的heart生成的关于同构、直和与直积封闭的三角满子范畴一致,进一步地,如果A还是同调有界的,那么该heart为D(A)的生成子的集合。 The author gives a natural t-structure for the derived category D(A) of a negative DG category A. Let H be the heart of the t-structure, it is proved that D(A) coincides with its smallest strictly full triangulated subcategory containing H and closed under coproducts and products. Moreover, if A is homology bounded, then H is a set of generators of D(A).
作者 傅昌建
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期39-43,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 三角范畴 DG范畴 T-结构 triangulated category, DG category, t-structure
  • 相关文献

参考文献10

  • 1Beilinson A, Bernstein J, Deligne P. "Faisceaux pervers"[J]. 1982, 100:5.
  • 2Tarrio A, Lopez J, Salorio S. Construction of t-structures and equivalence of derived eategories[J]. Trans Amet Math Soc, 2003, 355: 2523.
  • 3Happel D. Triangulated categories in the representation theory of finite-dimensional algebras[M]. London Math. Soe. LNS 119. Cambridge: Cambridge University Press, 1988.
  • 4Keller B, Vossieck D. Aisles in derived categories [J]. Bull Soc Math Belg, 1988, 40: 239.
  • 5Hoshino M, Kato Y, Miyachi J. On t-structures and torsion theories induced by compact objects [J]. J Pure Appl Algebra, 2002, 167: 15.
  • 6Keller B. Deriving DG categories[J]. Ann Sci Ecole Norm Sup, 1994, 27(4): 63.
  • 7Keller B. On the cyclic homology of exact categories [J]. J Pure Appl Algebra, 1999, 136(1): 1.
  • 8Thomason W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories[J]. Grothendieck Festschrift, 1990, 3: 247.
  • 9Krause H. Derived categories, resolutions and brown representability[J]. http:// arxiu.org/Ps_ cache/ math/pdf/511/0511047v3. pdf.
  • 10Bokstedt M, Neeman A. Homotopy limits in triangulated categories[J]. Compositio Math, 1993, 86: 209.

同被引文献20

  • 1Weibel C A. An introduction to homological algebra [M]. Beijing: China Machine Press, 2004.
  • 2Keller B. Deriving DG categories [J]. Ann Sci 6cole Norm Sup, 1994, 27(4):63.
  • 3Christensen J D. Ideals in triangulated categories [J]. AdvinMath, 1988, 136: 284.
  • 4Bondal A, Van Den Bergh M. Generators and representability of functors in commutative and noncom- mutative geometry[J]. Most Math J, 2003, 3 : 1.
  • 5Krause H, Kussin D. Rouquier's theorem on representation dimension [ EB/OL ]. arXiv: math/ 0505055v2 [math. RT]13 Sep 2005.
  • 6Oppermann S. Lower bounds for Auslander's representation dimension[EB/OL], http:// www. math. ntnu. no/-opperman/arbeit, pdf.
  • 7Beilinson A, Bernstein J, Deligne P. Faisceaux perv- ers[J]. 1982, 100: 5.
  • 8Cline E, Parshall B, Scott L. Algebra stratification in representation categories [J]. J Algebra, 1988, 117 504.
  • 9Cline E, Parshall B, Scott L. Finite dimensional al- gebras and highest weight eategories[J]. Jour reine angew Math, 1988, 391: 86.
  • 10Jorgensen P. Reeollement for diferential graded alge- bras[J]. J Algebra, 2006, 299: 589.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部