期刊文献+

基于小波变换和残差处理的人脸图像超分辨率技术研究 被引量:2

Research of super-resolution in facial image restoration based on wavelet transform and residuals processing
原文传递
导出
摘要 超分辨率图像复原技术常见的有插值法,POCS等,它们有细节模糊,运算复杂度大的弱点,针对以上问题,在基于学习的超分辨率图像复原中,提出了一种全新的小波系数特征向量匹配方法。算法分为两步:(1)采用基于补偿残差向量和多样本平均的低分辨率人脸图像的小波特征向量匹配及人脸图像复原。(2)用边缘提取和特定区域平滑的方法去除Gibbs效应等噪声。经实验和传统的插值法以及常规匹配方法比较,在细节复原和运算复杂度方面都有一定的提高。 Common super-resolution image restoration technologies are the interpolation methods, POCS and so on, their weaknesses are vague details, complex computing, based on Learning-based super-resolution, against the problems above, this paper proposes a new wavelet coefficients eigenvector matching method. This algorithm is divided into two steps: (1) Using residual vector compensation and sample average methods to match low-resolution facial images' wavelet eigenvector and recovery facial images. (2) Using edge detection and specific regional smoothing methods to remove the Gibbs effect and other noise. Comparing with the traditional interpolation methods and conventional matching methods, the details of the recoveries and the complexity of computing has indeed improved.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期101-106,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 超分辨率 小波变换 图像复原 残差处理 Gibbs效应 super-resolution, wavelet transform, image restoration, residual processing, the Gibbs effect
  • 相关文献

参考文献3

二级参考文献17

  • 1Tikhonov A N,Arsenin V Y.Solutions of Ill-posed Problems[M].Washington,DC:V.H.Winston & Sons,1977.
  • 2Andrews H C,Hunt B R.Digital Image Restoration[M].Englewood Cliffs,NJ:Prentice-Hall,1977.
  • 3Geman D,Yang C.Nonlinear image recovery with half-quadratic regularization[J].IEEE Transactions on Image Processing,1995,4(7):932 ~946.
  • 4Charbonnier P,Blanc-Feraud L,Aubert G,et al.Deterministic edge-preserving regularization in computed imaging[J].IEEE Transactions on Image Processing,1997,6 (2):198 ~ 311.
  • 5Stéphane Mallat.A Wavelet Tour of Signal Processing[M].San Diego,CA,USA:Academic Press,1999.
  • 6Belge M.Multiscale and Curvature Methods for the Regularization of the Linear Inverse Problems[D].Boston,Massachusetts:Northeastern University,1999.
  • 7Begle M,Kilmer M E,Miller E L.Wavelet domain image restoration with adaptive edge-preserving regularity[J].IEEE Transactions on Image Processing,2000,9(4):597 ~608.
  • 8Geman S,Geman D.Stochastic relaxation,Gibbs distributions,and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6 (6):721 ~ 741.
  • 9Geman S,Reynolds G.Constrained restoration and the recovery of discontinuities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14 (3):367 ~ 383.
  • 10Donoho D L.De-noising by soft-thresholding[J].IEEE Trans.Information Theory,1995,41(3):613-627.

共引文献58

同被引文献22

  • 1曹聚亮,吕海宝,谭晓波,周卫红.基于实时帧迭代反向投影算法的图像序列超分辨率处理[J].光学技术,2004,30(5):558-560. 被引量:5
  • 2秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233.
  • 3Kobayashi M, Okabe T, Sato Y. Detecting video forgeries based on noise characteristics[J]. The 3rd Pacific-Rim Symposium on Image and Video Tech- nology, 2009, 5414: 306.
  • 4De A, Chadha H, Gupta S. Detection of forgery in digital video [J]. 10th World Multi-Conference on Systemics Cybernetics and Informatics, 2006, 5: 229.
  • 5Hsu C, Hung T, Lin C, et al. Video forgery detec- tion using correlation of noise residue [J]. IEEE Workshop Multimedia Signal Processing (MMSP), 2008, 10: 170.
  • 6Wang W, Farid H. Exposing digital forgeries in vid- eo by detecting double MPEG Compression[C]// Proceedings of the Multimedia and Security Work- shop. Geneva, Switzerland:Association for Comput- er Machinery, 2006.
  • 7Wang W, Farid H. Exposing digital forgeries in in- terlaced and de-Interlaced video[J]. IEEE Transac- tions on Information Forensics and Security, 2007, 2:438.
  • 8Wang W, Farid H. Exposing digital forgeries in vid- eo by detecting duplication[C]//Proceedings of the Multimedia and Security Workshop. New York, USA: Dallas, TX,2007.
  • 9Bijhold G Z. Methods for identification of images ac- quired with digital cameras[J]. SPIE, 2001, 4232:505.
  • 10Houten W V, Geradts Z. Source video camera iden-tification for multiply compressed videos originating from YouTube[J]. Digital investigation6, 2009, 6: 48.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部