期刊文献+

基于非参数聚类和多尺度图像的目标跟踪 被引量:2

Target Tracking Based on Nonparametric Clustering and Multi-Scale Images
下载PDF
导出
摘要 为了实现复杂背景下的目标空间定位和尺度定位,提出了一种基于非参数聚类和多尺度图像的目标跟踪算法.该算法首先利用改进的非参数颜色聚类方法自动划分目标颜色空间;然后使用高斯函数对颜色直方图中的每个颜色特征位的空域分布进行建模,并根据Bhattacharyya系数得到目标模型与候选模型的相似性函数;最后利用多尺度图像进行由粗到细的目标空间定位,同时利用推导的核函数自动带宽选择公式进行目标尺度定位.实验结果表明该算法优于典型的均值漂移跟踪方法. In order to track a target in space and scale in a complex background, a target tracking algorithm based on the nonparametric clustering and multi-scale images is presented. In this algorithm, first, a modified nonparametric color-clustering method is employed to adaptively partition the color space of a tracked object, and the Gaussian function is used to model the spatial information of each bin of the color histogram. Next, the Bhattacharyya coefficient is adopted to derive a function describing the similarity between the target model and the target candidate. Then, a coarse-to-fine approach of multi-scale images is employed to implement the spatial location of the tracked object. Finally, the derived automatic bandwidth selection method of kernel function is applied to obtain the scale of the tracked object. Experimental results show that the proposed algorithm outperforms the classical mean shift tracker.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期34-41,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60572139) 广东省工业重点攻关项目(2004B10101032)
关键词 目标跟踪 均值漂移 聚类算法 带宽分配 多尺度图像 空间定位 尺度定位 target tracking mean shift clustering algorithm bandwidth allocation multi-scale image spatial localization scale localization
  • 相关文献

参考文献13

  • 1Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 5 ) : 603-619.
  • 2Collins R T. Mean-shift blob tracking through scale space [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos : IEEE ,2003:234-240.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 ( 5 ) :564-577.
  • 4Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos : IEEE ,2005 : 1 158- 1 163.
  • 5彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 6Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection [ C ] //Proceedings of the Eighth IEEE International Conference on Computer Vision. Vancouver: IEEE ,2001:438-445.
  • 7Comaniciu D, Meer P. Distribution free decomposition of multivariate data [ J ]. Pattern Analysis and Applications, 1999,2:22-30.
  • 8王涛,胡事民,孙家广.基于颜色-空间特征的图像检索[J].软件学报,2002,13(10):2031-2036. 被引量:92
  • 9Scott D W. Multivariate density estimation [ M ]. New York : Wiley-Interscience, 1992.
  • 10Wang H Z, Suter D, Schindler K. Effective appearance model and similarity measure for particle filtering and visual tracking [ C ]//Proceedings of European Conference on Computer Vision. Berlin : Springer-Verlag,2006 : 606-618.

二级参考文献21

  • 1边肇祺.模式识别[M].北京:清华大学出版社,1986..
  • 2[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 3[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 4[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 5[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 6[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 7[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 8[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 9[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 10[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.

共引文献255

同被引文献25

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2孙季丰,王成清.基于特征点光流和卡尔曼滤波的运动车辆跟踪[J].华南理工大学学报(自然科学版),2005,33(10):19-23. 被引量:11
  • 3齐苏敏,黄贤武,伊怀峰.基于各向异性核函数的均值漂移跟踪算法[J].电子与信息学报,2007,29(3):686-689. 被引量:6
  • 4李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 5Comaniciu D, Meer P. Mean Shifl:a robust approach tn- ward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5 ) : 603-619.
  • 6Bradski G R. Real time face and object tracking as a com- ponent of a pereeptual user interface [ C ]//Proeeedings of IEEE Workshop on Applications of Computer Vision. Berlin : IEEE, 1998:214-219.
  • 7Comaniciu D, Ramesh V, Meet P. Real-time tracking of non-rigid objects using Mean Shift [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. SC Hilton Head Island: IEEE, 2000 : 142-149.
  • 8Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking [ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 (5) :564-577.
  • 9Collins R T. Mean-Shift blob tracking through scale space [ C ]//Proceedings of IEEE Computer Society Conferenee on Computer Vision and Pattern Recognition. Los Almni- tos :IEEE,2003:234-240.
  • 10Li Zhi-dong, Chen Jing, Schraudolph N N. An improved Mean-Shift tracker with kernel prediction and scale op- timisation targeting for low-frame-rate video tracking [ C]// Proceedings of the 19th International Conference on Pat- tern Recognition. Florida Tampa : IEEE ,2008 : 1-4.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部