期刊文献+

一种改进的伪Zernike矩快速计算方法 被引量:5

An Improved Approach to Fast Computation of Pseudo-Zernike Moments
下载PDF
导出
摘要 为了有效地利用伪Zernike矩进行图像分析和模式识别,针对传统伪Zernike矩快速计算方法在计算伪Zernike矩时复杂度大的问题,提出一种改进的伪Zernike矩快速计算方法.该方法利用C lenshaw递推公式实现了伪Zernike矩多项式求和的快速计算.初步实验结果表明:在计算指定阶伪Zernike矩时,文中方法比传统伪Zernike矩快速计算方法需要更少的CPU时间;在人脸特征的提取及识别方面,文中方法的识别率比传统的主成分分析方法约高5%,而特征提取需要的平均时间为1.2 s. In order to effectively apply pseudo-Zernike moments to the image analysis and the pattern recognition, an improved approach to the fast computation of pseudo-Zernike moments, which uses Clenshaw recurrence formula to implement the fast computation of pseudo-Zernike moment polynomial summation, is proposed to reduce the computational complexity of the traditional approaches. Preliminary experimental results demonstrate that the proposed approach costs less CPU time than the traditional methods in terms of computing special-order moments, and that it is of a recognition rate 5% more than that of the traditional principal component analysis method in terms of extracting and recognizing face features, with an average extraction time of 1.2 s.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期54-58,90,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金重点项目(U0735004) 广东省自然科学基金资助项目(05006593)
关键词 图像识别 正交矩 伪ZERNIKE矩 快速算法 image recognition orthogonal moments pseudo-Zernike moments fast algorithm
  • 相关文献

参考文献18

  • 1Pun C M, Lee M C. Log-polar wavelet energy signatures for rotation and scale invariant texture classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 ( 5 ) : 590- 603.
  • 2Hu M K. Visual pattern recognition by moment invariants [ J ]. IRE Transactions on Information Theory, 1962, 8 (1) : 179-187.
  • 3袁华,董守斌,张凌,张平.GFO和不变矩实现基于形状的图像检索新方法[J].华南理工大学学报(自然科学版),2002,30(4):60-64. 被引量:16
  • 4Teh C H,Chin R T. On image analysis by the methods of moments [J]. IEEE Transactions on Pattern and Machine Intelligence, 1988,10 (4):496-513.
  • 5Chong C W. A formulation of a new class of continuous orthogonal moment invariants, and the analysis of their computational aspects [ D]. Kuala Lumpur: Faculty of Engineering, University of Malaya ,2003.
  • 6Gu J, Shu H Z, Toumoulin C, et al. A novel algorithm for fast computation of Zernike moments [ J ]. Pattern Recognition ,2002,35 ( 12 ) :2905-2911.
  • 7Mukundan R, Ramakrishnan K R. Fast computation of Legendre and Zernike moments [ J ]. Pattern Recognition, 1995,28 ( 9 ) : 1433-1442.
  • 8Shu H Z, Luo L M, Yu W X, et al. A new fast method for computing Legedre moments [ J ]. Pattern Recognition, 2000,33(2) :341-348.
  • 9Chong C W, Raveendran P, Mukundan R. A comparative analysis of algorithms for fast computation of Zernike moments [ J ]. Pattern Recognition ,2003,36( 3 ) :731-742.
  • 10Hwang S K, Kim W Y. A novel approach to the fast computation of Zernike moments [ J ]. Pattern Recognition, 2006,39 ( 11 ) :2065-2076.

二级参考文献18

  • 1J D Zhou, H Z Shu, et al. Two new algorithms for efficient computation of Legendre moments[J] .Pattern Recognition.2002,35:1143- 1152.
  • 2CW Chong,et al. An efficient algorithm for fast computation of Pseudo-Zernike moments[J]. International Journal of Pattern Recognition and Artificial Intelligence.2003,17(6): 1011 - 1023.
  • 3C H Teh,R T Chin. On image analysis by the methods of moments[J].IEEE Trans Pattern Analysis and Machine Intelligence. 1988,10(4):496 - 513.
  • 4F Zernike. Beugungs theorie des schneidenverfahrens und seiner verbesserten form,der phasen kontrast methode[J] .Physica, 1934,1:689 - 704.
  • 5A B Bhatia,E Wolf. On the circular polynomials of Zemike and related orthogonal sets[A] .Proc Camb Phil Soc[C] .1954,50:40-48.
  • 6C W Chong, P Raveendran et al. A comparative analysis of algorithms for fast computation of Zernike moments[J]. Pattern Recognition.2003,36:731 - 742.
  • 7R Mukundan, K R Ramakrishnan. Fast computation of Legendre and Zernike moments[J]. Pattern Recognition. 1995,28 (9): 1433 - 1442.
  • 8J Gu, H Z Shu et al. A novel algorithm for fast computation of Zernike moments[J]. Pattern Recognition. 2002,35: 2905 - 2911.
  • 9H Z Shu, L M Luo, et al. An efficient method for computation of Legendre moments[J]. Graphical Models.2000,62:237 - 262.
  • 10Mukundan R,Ong S.H,Lee P.A,Discrete vs.Continuous orthogonal moments in image analysis.In:Proceedings of the International Conference on Imaging Systems,Science and Technology,Las Vegas,2001,23~29

共引文献30

同被引文献64

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部