期刊文献+

基于改进固定点ICA算法的图像盲分离

Blind Separation Based on Improved Fixed-point ICA Learning Algorithm
下载PDF
导出
摘要 独立向量分析根据信源统计独立特性对观测信号进行分离运算,目前采用较多的是固定点独立分量分析(FastICA).考虑到图像信号分离中,图像信号复杂多样,信息量大的特点,采用改进固定点ICA算法对图像进行分离,克服了采用固定点ICA算法计算量大、收敛速度慢的缺点.文章采用随机提取的独立图像做实验,取得了稳定性较强的效果. Signals were separated through Independent Component Analysis(ICA) based on independenees of the observed signal. Fixed-point independent Component Analysis algorithm is widely used nowadays. Considering complexity, diversity and much information of figure signal, an improved Fast ICA algorithm was used to separate the image signal, overcoming the large amount of calculation and the slow convergence of Fixed ICA algorithm. Some expefirnents were done with random images and achieved the stability of the results.
作者 侯艳艳
出处 《佳木斯大学学报(自然科学版)》 CAS 2009年第1期36-38,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 独立向量分析 负熵 牛顿迭代 概率密度函数 independent component analysis negentropy Newton iterative algorithm probability density function
  • 相关文献

参考文献3

  • 1Zeng Shenggen, Zhu Ningbo , Baoye. A Modified Fast Independent Component Analysis and Its Application to Image Separation [ J ]. Journal of Image and Graphics,2003,8A( 10):1159- 1165.
  • 2Learn- Miller E G. ICA Using Spacings Estimates of Entropy[J]. Journal of Machine Learning Reasearch,2004,4(7/8) : 1271 - 1295.
  • 3Hyvarinen. A Fast and Robust Fixed - point Algorithm for Independent Component Analysis[J]. IEEE Trans On Neural Network, 1999, 10(3) :626 - 634.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部