期刊文献+

Laplace方程Cauchy问题的Tikhonov正则化方法

Tikhonov Regularization Method for the Cauchy Problem of the Laplace Equation
下载PDF
导出
摘要 考虑了矩形区域上一个Laplace方程的Cauchy问题.对y=0时的Cauchy数据,以及x=0,x=π时的边界数据均已给出,要求0<y≤1时的解.对该不适定问题,文中用Tikhonov正则化方法构造正则化解,并证明了所得正则化解稳定地收敛于精确解. In this paper, a Cauchy problem for the Laplace equation is considered in a rectangle domain. Cauchy data are given at y = 0 , and the boundary data are given at x = 0 and x = 7π . The solution for 0 〈 y ≤ 1 is sought. It is know that such problem is severely ill - posed. The authors use Tikhonov regularization. method to solve it. Convergence estimations are presented under an a - priori boundary assumption for the exact solution.
作者 张宏武
出处 《佳木斯大学学报(自然科学版)》 CAS 2009年第1期132-133,共2页 Journal of Jiamusi University:Natural Science Edition
关键词 不适定问题 LAPLACE方程 柯西问题 TIKHONOV正则化方法 Ill- posed problem Laplace equation Cauchy problem Tikhonov regularization method
  • 相关文献

参考文献5

  • 1M. Alessandrini, Stable Detennination of Acrack from Boundary Measurements. Proc. Roy. soc, EdinburghSect. A123 (1993), 497 -516.
  • 2G. A. Viano, Solution of the Hausdorf Moment by the Use of Pollaczek Polynomials. J. Math. Anal.Appl.156 (1991), 410-427.
  • 3P. Colli - Fraznone, L. Guerri, S. Tentoni, C. Viganotti, S. Baru, S. Spaggiari, B. Taccaardi, A Mathematical Procedure for Solving the Inverse Potential Problem of Electrocardiogaaphy. Analysis of the Time - space Accuracy from Invitro Experimentdata. Math. Biosci. 77 ( 1985), 353 - 396.
  • 4U. Tautenhahn, Optimal Stable Solution of Cauchy Problems for Elliptic Equations. Z. Anal. Anwendungen, 15(4) ( 1996), 961 - 984.
  • 5Andreas Kitsch, An Introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences. Springer- Verlag, New York, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部