期刊文献+

基于四边形网格的新细分算法的研究 被引量:1

Research on New Subdivision Scheme for Quadrilateral Meshes
下载PDF
导出
摘要 采用重复平均的方法对细分曲面进行平滑细分,提出一种基于四边形网格的新细分算法.该算法每细分一次四边形网格,其数目增加为原来的两倍,所以此细分算法具有网格几何操作简单,所得网格数据量增长相对缓慢的优点,应用广泛,更适合3D信号网络传输等应用领域,并且生成曲面在规则点具有C2连续性,在非规则点具有C1连续性. In this paper, using the method of duplication average subdivision surfaces smoothing Subdivision,a new stationary subdivision scheme is presented for quadrilateral meshes. Once this algorithm subdivides a time of Quadrilateral Meshes, the number of the Quadrilateral Meshes increases for original two times. The simplicity in ge- ometric operation and the slow topological refinement make the subdivision scheme more suitable for many applications, such as 3D image reconstruction and network transmission. The resulting surface is C^2 continuous for regular vertices and C^1 continuous for extraordinary vertices.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2009年第1期35-37,42,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金项目(60173055)
关键词 细分算法 四边形网格 非规则点 subdivision scheme quadrilateral meshes extraordinary vertex
  • 相关文献

参考文献2

二级参考文献33

  • 1Halstead Mark, Kass Michael, deRose Tony. Efficient, fair interpolation using Catmull-Clark surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, California, 1993. 35~44
  • 2Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computed-Aided Design,1978, 10(6): 350~355
  • 3Nasri A H. Curve interpolation in recursively generated B-spline surfaces over arbitrarily topology [J]. Computer Aided Geometric Design, 1997, 14(1): 13~30
  • 4Nasri A H, Abbas A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints [J]. Computer & Graphics, 2002, 26(3): 393~400
  • 5Nasri A H. Interpolating an unlimited number of curves meeting at extraordinary points on subdivision surfaces [J]. Computer Graphics Forum, 2003, 22(1): 87~97
  • 6Habib A, Warren J. Edge and vertex insertion for a class of C1 subdivision surfaces [J]. Computer Aided Geometric Design,1999, 16(4): 223~247
  • 7Levin A. Combined subdivision schemes for the design of surfaces satisfying boundary conditions [J]. Computer Aided Geometric Design, 1999, 16(5): 345~354
  • 8Levin A. Interpolating nets of curves by smooth subdivision surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California,1999. 57~64
  • 9Hoppe H, deRose T, Duchamp T, et al. Piecewise smooth surface construction [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, Orlando,Florida, 1994. 295~302
  • 10Suzuki H, Takeuchi S, Kanai T, et al. Subdivision surface fitting to a range of points [A]. In: Proceedings of Pacific Graphics, Seoul, 1999. 158~167

共引文献26

同被引文献6

  • 1杨宁宁,孙晓红,李乃文,等.Pro/Engineer Wildfire 4.0中文版曲面设计[M].北京:清华大学出版社,2008.Applications,2006,3(4):665674.
  • 2Van Den Berg E,Bronsvoort W F,Vergeest J S M.Freeform feature modeling:concepts and prospects[J].Computers in Industry,2002,49(2):217233.
  • 3Zorin D,Schroder P,Derose T.Subdivision for modeling and animation[C]//Proceedings of International Conference on Computer Graphics and Interactive Techniques,ACM SIGGRAPH 2006 Courses.Boston,USA:[s.n.],2006:3050.
  • 4Sederberg T,Parry S.Free-form deformation of solid geometric models[J].ACM Compute Graph (SIGGRAPH'86),1986,20(4):151–160.
  • 5仝鸿杰."同步建模"技术对未来计算机辅助技术的影响[EB/OL].[2009-03-13].http://mil.news.sohu.com/20090313/n262783874.shtml.T.
  • 6Nyirenda P J, Mulbagal M, Bronsvoort W F. Definition of free:form surface feature classes[J]. Computer-Aided Design and Applications, 2006,3 (4):665 - 674.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部