期刊文献+

一个破产时罚金折现期望的更新方程

A Renewal Equation for Expected Discounted Penalty at Ruin
下载PDF
导出
摘要 考虑经典风险模型下带有一种随机利率的破产时罚金折现期望,其利率的随机性通过标准Wiener过程和Poisson过程来描述.就这种随机利率的情形,给出破产时罚金折现期望满足的积分-微分方程和更新方程. In the classical risk model, the expected discounted penalty at ruin with a stochastic interest rate is considered. The interest rate randomness is described by standard Wiener process and Poisson process. Under this stochastic interest rate, the integro-differential equation and the renewal equation for the expected discounted penalty at ruin are derived respectively.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2009年第1期108-111,共4页 Journal of Harbin University of Science and Technology
基金 安徽建筑工业学院硕博科研启动项目(20071201-15)
关键词 破产时罚金折现期望 标准Wiener过程 POISSON过程 积分-微分方程 更新方程 expected discounted penalty at ruin standard Wiener process Poisson process integro-differential equation renewal equation
  • 相关文献

参考文献6

二级参考文献10

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2BewereNL 郑韫瑜 余跃年 译.风险理论[M].上海:上海科学技术出版社,1998..
  • 3Gerber H U,Shiu E S W.On the time value of ruin[J].North American Actuarial Journal,1998,2(1):48-78.
  • 4Gerber H U,Landry B.On the discounted penalty at ruin in a jump-diffusion and the perpetual put option[J].Insurance:Mathematics and Economics,1998,22:263-276.
  • 5Gerber H U,Shiu E S W.From ruin theory to pricing reset guarantees and perpetual put options[J].Insurance:Mathematics and Economics,1999,24:3-14.
  • 6Beekman J A,Fueling C P.Interest and mortality randomness in some annuities[J].Insurance:Mathematics and Economics,1990,9:185-196.
  • 7Beekman J A,Fueling C P.Extra randomness in certain annuity models[J].Insurance:Mathematics and Economics,1991,10:275-287.
  • 8Grandell J.Aspects of Risk Theory[M].New York:Springer-Verlag,1991.
  • 9Paulsen J,Gjessing H K.Ruin theory with stochastic economic environment[J].Advances in Applied Probability,1997,29:965-985.
  • 10刘凌云,汪荣明.一类随机利率下的增额寿险模型[J].应用概率统计,2001,17(3):283-290. 被引量:43

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部