摘要
概率数据流管理与分析逐步引起了研究者们的关注.Skyline查询技术是近年来数据库领域的研究热点.此前相关工作仅限于静态数据集或传统确定性数据流上的Skyline查询处理,尚无人考虑概率数据流上的Skyline计算问题,本文提出的SOPDS算法则较好地解决了该问题.在采用适应性更强的网格索引的基础上,提出了概率定界、逐步求精、提前淘汰与选择补偿等启发式规则对算法从时间和空间两方面进行了系统地优化.实验表明,算法在时间与空间上具有较高的整体性能.
Management and analysis of uncertain,probabilistic data stream has attracted considerable attention within database community.Skyline query processing is an open question recently.Although previous work has addressed skyline computations over static data or traditional data stream,skyline computation over probabilistic data stream is still at large.We propose an efficient algorithm SOPDS to handle this issue.Based on more adaptable grid index,a set of heuristic rules like probability bounding,progressive refinement,pre-elimination and selective compensation are developed to improve the comprehensive performance of SOPDS from point of reducing both CPU overhead and memory consumption.Massive experiments demonstrate that SOPDS is of high overall performance.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2009年第2期285-293,共9页
Acta Electronica Sinica
基金
国家973重点基础研究发展规划(No.2005CB321905)
关键词
概率数据流
SKYLINE
逐步求精
提前淘汰
probabilistic data stream
skyline
progressive refinement
pre-elimination strategy