期刊文献+

好氧锥形流化床生物膜反应器启动与生物膜形成特征研究 被引量:5

Start-up and Biofilm Formation in an Aerobic Conical Fluidized-bed Biofilm Reactor
原文传递
导出
摘要 对好氧锥形流化床膜生物反应器(A-TFBBR)的启动特征、生物膜行为、特征和结构进行了详细的探讨,并与相近启动条件下的传统柱状流化床生物膜反应器(A-CFBBR)的启动行为进行比较.结果表明,自然培养生物种源的方法与传统的以活性污泥做种源的方法相比节省了生物驯化和淘汰的时间,在短时间内就完成了生物反应器的启动(柱状床11 d,锥形床16 d),而一般以活性污泥为种源则大都需要100~300 d的启动时间.另外,采用这种方法在A-TFBBR反应器和A-CFBBR反应器中获得的生物膜厚度分别仅为(32±1)μm和(24±2)μm,低于大部分报道的生物膜厚度.2个生物反应器都表现出理想的COD去除能力,其中A-TFBBR反应器对COD的去除率高达95%以上,比A-CFBBR对COD的去除率平均高出15%. Both aerobic tapered (A-TFBBR) and cylindrical fluidized-bed biofilm reactors (A-CFBBR) were set up. The start-up characteristics, performance, characteristics and microstrueture of the biofilm were also investigated in both reactors with similar condition of start-up. Compared with the traditional method that using activated sludge as bacteria source (mostly 100-300 d for start-up), cultivating bacteria naturally could save the acclimation time. It took much shorter time (11 d for the cylindrical bed, while 16d for the tapered bed) to start up the reactors. Further more, the hiofilm thickness in A-TFBBR and A-CFBBR was only (32 ±1)μm and (24±2)μm, respectively. The biofilm was thinner than most of reported bifilm obtained by other researchers. Both A-TFBBR and A-CFBBR showed high COD removal capacity, and COD removal rate of A-TFBBR was more than 95%, 15% higher than that of A-CFBBR.
出处 《环境科学》 EI CAS CSCD 北大核心 2009年第3期827-833,共7页 Environmental Science
基金 Natural Sciences and Engineering Research Council of Canada (NSERC) 国家留学基金项目
关键词 锥形流化床 启动 生物膜形成 生物膜厚度 生物量 conical fluidized-bed start-up biofilm formation biofilm thickness bacteria amount
  • 相关文献

参考文献1

二级参考文献49

  • 1Ahring B K, Angelidaki I, 1995. Volatile fatty acids as indicators of process imbalance in anaerobic digestion[J]. Appl Microbiol Biot, 43: 559-565.
  • 2Ahring B K, Angelidaki I, 1997. Monitoring and controlling the biogas process[C]. Proceeding at 8th International Conference on Anaerobic Digestion. Sendai, Japan. 1: 40-45.
  • 3APHA, AWWA, WEE 2005. Standard Methods for the examination of water and wastewater[M]. 21st ed. Washington, DC: American Public Health Association.
  • 4Barascud M C, 1992. COD removal in a closed water circuit of a paper mill by an anaerobic fluidized bed reactor[J]. Water Sci Technol, 26: 445-454.
  • 5Bhat N, McAvoy T J, 1990. Use of neural nets for dynamic modeling and control of chemical process systems[J]. Comput Chem Eng, 14: 573-580.
  • 6Boening P H, Larsen V F, 1982. Anaerobic fluidized bed whey treatment[J]. Biotechnol Bioeng, 24: 2539-2556.
  • 7Bose N K, Liang P, 1998. Neural network fundamentals with graphs, algorithms, and applications[M]. New Delhi: Tata McGraw-Hill Publishing Company Limited.
  • 8Characklis W G, Trulear M G, Bryers J D, 1982. Dynamics of biofilm processes: methods[J]. Water Res, 16: 1207-1216.
  • 9Chen S J, Li C T, Shieh W K, 1988. Anaerobic fluidized bed treatment of an industrial wastewater[J]. J Water Pollut Con F, 60: 1826-1832.
  • 10Fang H H P, Liu G H, Zhu J F et al., 1994. Treatment of brewery effluent by UASB process[J]. J Environ Eng, 116: 454-460.

共引文献7

同被引文献57

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部