期刊文献+

机械产品曳引系统的优化设计方法 被引量:1

Optimal design method of traction system in mechanical products
下载PDF
导出
摘要 针对机械产品曳引系统的性能优化,应用非支配排序遗传算法(NSGA-II)求解曳引性能的三目标优化问题,即最大曳引效率、最小曳引功率和最小制动力矩.根据曳引性能优化模型中设计变量分为连续值和离散值的特点,引入浮点数与二进制数混合编码策略.通过改进NSGA-II的二进制交叉、变异规则,保证了设计变量的全局寻优能力和有效性,使得算法一次运行就能够求得分布均匀的Pareto最优解集.实验数据分析表明,采用混合编码策略,NSGA-II算法较线性加权法和Pareto强度进化算法(SPEA)能够获得边界性和分布性更好的Pareto最优前沿. Aiming at the performance optimization of the traction system in mechanical products, non-dominated sorting genetic algorithm (NSGA-Ⅱ) was used to solve the optimal problem of traction performance with three objectives: maximum traction efficiency, minimum traction power and minimum braking torque. According to the feature that design variables were classified into continuous and discrete values in the optimization model of traction performance, a float/binary hybrid chromosome representation scheme was introduced. The binary crossover and mutation of NSGA-Ⅱ were also improved to ensure the global search capability and the validity of design variables, so a well-distributed Pareto optimal set could be achieved in a single run. Experimental results showed that under the hybrid chromosome representation scheme, the improved NSGA-Ⅱ can acquire Pareto optimal fronts with better boundary and distribution than those of the linear combination and the strength Pareto evolution algorithm (SPEA).
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第2期220-224,270,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50875237 50835008) 国家"863"高技术研究发展计划资助项目(2007AA04Z190)
关键词 NSGA—Ⅱ算法 染色体混合编码策略 曳引系统 曳引性能 NSGA-Ⅱ algorithm hybrid chromosome representation scheme traction system traction performance
  • 相关文献

参考文献12

  • 1杨春兰.电梯曳引机设计·安装·维修[M].北京:机械工业出版社,2004.
  • 2ALTANNAR C, PANOS M P. A survey of recent developments in multiobjective optimization [J]. Annals of Operations Research, 2007, 154(1) : 29 - 50.
  • 3BUCHE D, DORNBERGER R. New evolutionary algorithm for multi-objective optimization and its application to engineering design problems [C]// Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization. Dalian.. [s. n.], 2001.
  • 4HIRANI H. Multiobjective optimization of a journal bearing using the Pareto optimality concept [J]. Journal of Engineering Tribology, 2004, 218(4): 323 - 336.
  • 5ZITTLER E, THIELE I.. An evolutionary algorithm for multiobjective optimization: the strength Pareto approach [R]. TIK-Report, 1998.
  • 6DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 7FRANKLIN M, JOSE L B, JOSE A D. NSGA and SPEA applied to multiobjective design of power distribution systems [J]. IEEE Transactions on Power Systems, 2006, 21(4): 1938-1945.
  • 8OYAMA A, OBAYASHI S, NAKAMURA T. Realcoded adaptive range genetic algorithm applied to transonic wing optimization [J]. Applied Soft Computing, 2001, 1(3): 179-187.
  • 9LIANG Y, LEUNG K S, XU Z B. A novelsplicing/decomposable binary encoding and its operators for genetic and evolutionary algorithms [J]. Applied Mathematics and Computation, 2007, 190(1): 897-904.
  • 10LIN Y C, HWANG K S, WANG F S. A mixed-coding schema of evolutionary algorithms to solve mixedinteger nonlinear programming problems [J]. Computer and Mathematics with Applications, 2004, 47(8/9): 1295 - 1307.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部