摘要
Ω∈R n,n≥3是一个有界Lipschitz区域.令ωα(Q)=|Q-Q0|α,其中Q0是边界Ω上的一个固定点.对带有非负奇异位势的Schrdinger方程-Δu+Vu=0,V∈B∞,研究了边值在L2(Ω,ωαdσ)中的Neumann问题,证明了当0<α<n-1时,Neumann问题存在唯一解,并且(▽u)*∈L2(Ω,ωαdσ).
Let Ω be a bounded Lipschitz domain in R^n, n ≥3. Let ωa (Q) =|Q - Q0 |^a, where Q0 is a fixed point on Ω. For Schrodinger equation -△u + Vu = 0 in Ω, with singular non-negative potentials V belonging to the reverse Holder class B∞, we study the Neumann problem with boundary data in the weighted space L^2 ( Ω, ωadσ) , where dσ denotes the surface measure on Ω. We show that a unique solution u can be found for the Neumann problem provided 0 〈 a 〈 n - 1. Also proven is that the non-tangential maximal function of △↓u exists in L^2 ( Ω, ω dσ).
出处
《宁波大学学报(理工版)》
CAS
2009年第1期94-99,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
Supported by the National Natural Science Foundation of China(10471069,10771110)
Zhejiang Provincial Sprout Plan Foundation of China(2007R40G2070023)