期刊文献+

Lipschitz区域上Schrdinger算子Neumann问题的讨论(英文)

Notes on Neumann Problem for Schrdinger Operators in Weighted Lipschitz Domains
下载PDF
导出
摘要 Ω∈R n,n≥3是一个有界Lipschitz区域.令ωα(Q)=|Q-Q0|α,其中Q0是边界Ω上的一个固定点.对带有非负奇异位势的Schrdinger方程-Δu+Vu=0,V∈B∞,研究了边值在L2(Ω,ωαdσ)中的Neumann问题,证明了当0<α<n-1时,Neumann问题存在唯一解,并且(▽u)*∈L2(Ω,ωαdσ). Let Ω be a bounded Lipschitz domain in R^n, n ≥3. Let ωa (Q) =|Q - Q0 |^a, where Q0 is a fixed point on Ω. For Schrodinger equation -△u + Vu = 0 in Ω, with singular non-negative potentials V belonging to the reverse Holder class B∞, we study the Neumann problem with boundary data in the weighted space L^2 ( Ω, ωadσ) , where dσ denotes the surface measure on Ω. We show that a unique solution u can be found for the Neumann problem provided 0 〈 a 〈 n - 1. Also proven is that the non-tangential maximal function of △↓u exists in L^2 ( Ω, ω dσ).
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2009年第1期94-99,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 Supported by the National Natural Science Foundation of China(10471069,10771110) Zhejiang Provincial Sprout Plan Foundation of China(2007R40G2070023)
关键词 Schrdinger算子 NEUMANN问题 加权Lipschitz区域 Schrodinger equation Neumann problem weighted Lipschitz domains
  • 相关文献

参考文献12

  • 1Dahlberg B. On estimates for harmonic measure[J]. Arch Rat Mech Anal, 1977, 65:273-288.
  • 2Dahlberg B. On the Poisson integral for Lipschitz and C^1 domains[J]. Studia Math, 1979, 66:13-24.
  • 3Jerison D S, Kenig C E. The neumann problem on Lipschitz domains[J]. Bull Amer Math Soc, 1981, 4:203- 207.
  • 4Verchota G. Layer potientials and regualarity for the Diri-Chitzproblemfor Lapace's equation in Lipschitz domains[J]. J Funct Anal, 1984, 59:572-611.
  • 5Dahlberg B, Kening C. Hard space and the Neumann problem in L^p for Laplace's equation in Lipschitz domains[J]. Ann of Math, 1987, 125:437-465.
  • 6Shen Z. Resolvent estimates in U^p for elliptic systems in Lipschitz domains[J]. Funct Anal, 1995, 133:224-251.
  • 7Tao X. Boundary value problem for Schrodinger equation on Lipschitz's domains[J]. Acta Math Sinica, 2000, 43(1) 167-178.
  • 8Muckenhoupt B. Weighted norm inequality for the Hardy maximal function[J]. Trans Amer Math Soc, 1972, 165: 207-227.
  • 9Shen Z. Weighted estimates in L^2 for Laplace's equation on the Lipschitz domains[J]. Trans Amer Math Soc, 2005, 357(7):2 843-2 870.
  • 10Shen Z. L^p estimates for Schrodinger operators with certain potentials[J]. Ann Inst Fourier, 1995, 45(2):513- 546.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部