期刊文献+

FC-空间的一个极大极小不等式及应用 被引量:3

A Minimax Inequality in FC-Spaces and Its Applications
下载PDF
导出
摘要 运用FC-空间中的一个极大极小不等式,对FC-空间中的抽象变分不等式和似变分不等式解的存在性,Ky Fan型截口定理,以及具有扰动的二人零和博弈存在性进行研究,从而得到没有线性结构的FC-空间中一些新的抽象变分不等式和似变分不等式解的存在性结果和一Ky Fan型截口定理.最后得到了一个具有扰动的二人零和博弈的存在性结果. By using a minimax inequality in FC-spaces, an analysis is made on the existence of the solutions to abstract variational inequality and variational-like inequality, the Ky Fan section theorem,and the equilibrium existence of perturbed zero-sum game for two persons in FC-spaces. As a result, some new results about the existence of the solutions to abstract variational inequality and variational-like inequality and a Ky Fan section theorem in FC-spaces without linear structure are drawn ,and the result of the equilibrium existence of perturbed zero-sum game for two persons is actually obtained.
作者 王彬
出处 《内江师范学院学报》 2009年第2期17-19,共3页 Journal of Neijiang Normal University
关键词 FC-空间 极大极小不等式 变分不等式 零和博弈 零调集 KY Fan型截口定理 FC-space minimax inequality variational inequality zero-sum game acyclic set Ky Fan section theorem
  • 相关文献

参考文献1

二级参考文献8

  • 1Ding X P. New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequalities and maximal elements[J]. J Indian Pure Appl Math,1995,26(1):1-19.
  • 2Ding X P. Maximal elements theorems in product FC-spaces and generalized games[J]. J Math Anal Appl, 2005,305 : 29-42.
  • 3Ding X P. Generalized G-KKM theorems in generalized convex spaces and their applications[J]. J Math Anal Appl, 2002,266 : 21-37.
  • 4Shioji N. A further generalization of Knaster-Kuratowski-Mazurkiewics theorem[J]. Proc Amer Math Soc, 1991,117: 187-195.
  • 5Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. Wiley, New York,1984.
  • 6Lin L J, Yu Z T, Ansari Q H, Lai L P. Fixed point and maximal theorems with applications to abstract economies and minimax inequalities[J]. J Math Anal Appl, 2003,284: 656-671.
  • 7Lu H S, Tang D S. An intersection theorem in L-convex spaces with applications[J]. J Math Anal Appl, 2005,312:343-356.
  • 8McClendon J F. Minimax inequalities and variational inequalities for compact spaces[J]. Proc Amer Math Soc, 1983,89 : 717-721.

共引文献1

同被引文献31

  • 1陈冬香,陈杰诚.带粗糙核的Marcinkiewicz积分算子在Herz空间的有界性(英文)[J].数学进展,2005,34(5):591-599. 被引量:18
  • 2王黎辉,郭伟平.H-空间中的截口定理及其应用[J].数学的实践与认识,2005,35(12):197-200. 被引量:3
  • 3杨必成.关于反向的Hardy-Hilbert积分不等式[J].纯粹数学与应用数学,2006,22(3):312-317. 被引量:9
  • 4Hardy GH, Littlewood JE, Polya G. Inequalities [M]. Cambridge: Cam bridge University Press, 19 5 2.
  • 5Mitrinovic DS, Pecarie JE, Fink AM. Inequalities involving functions and their integrals and derivatives [M].Boston : Kluwer Academic Pubhshers, 1991.
  • 6YANG Bicheng. On Hardy-Hilbert's integral inequality [J]. J Math Anal Appl,2001,261:295-306.
  • 7WANG Zhuxi,GUO Dun-ren. An introduction to special functions [M]. Beijing: Science Press, 1979.
  • 8KUANG Jichang. Applied inequalities [M]. Changsha: Hunan Education Press, 1993.
  • 9丁勇,陆善镇.On commutators of Marcinkewicz integrals with rough kernel[J]. Math Anal Appl, 2002, 275:60-68.
  • 10陆善镇,杨大春.Sublinesar operators rough Kernel on generalized Morrey space [J]. Hokkaido Math emalical Journal, JAPAN, 1998, XXVII(1).

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部