摘要
To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
针对有限差分数值模拟的频散问题,本文将交错网格技术和紧致差分格式相结合,推导了横向各向同性介质一阶速度-应力波动方程的紧致交错网格差分格式;对比分析了紧致交错网格差分格式、交错网格差分格式以及紧致差分格式的截断误差主项,并利用Fourier误差分析方法分析了上述三种差分格式的近似精度;在此基础上,分别采用上述三种差分格式进行了波场数值模拟。结果表明,当差分方程阶数相同时,紧致交错网格差分格式截断误差最小,数值频散最弱,差分精度最高,证实了该方法的有效性。
基金
supported by the National High-Tech Research and Development Program of China(Grant No.2006AA06Z202)
the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)
the Graduate Student Innovation Fund of China University of Petroleum(East China)(Grant No.S2008-1)
the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)