期刊文献+

一类高阶拟线性椭圆方程共振问题的可解性 被引量:2

On the solvability of a higher order bf quasilinear elliptic resonance problem
下载PDF
导出
摘要 研究任意特征值的高阶拟线性椭圆方程共振问题,而非线性项为无界函数,且满足超线性增长条件.引入伪特征值的概念,在推广的Landesman-Lazer条件下,得到上述问题解的存在性定理. The resonance problem of the higher order quasilinear elliptic equation with arbitrary eigenvalue was dealt with, where the unbounded non-linear term satisfied the superlinear condition, and a new notation of psuedo-eigenvalue was introduced. Then, an existence theorem was obtained under the Landesman-Lazer condition.
作者 赵青 贾高
出处 《上海理工大学学报》 CAS 北大核心 2009年第1期1-5,共5页 Journal of University of Shanghai For Science and Technology
基金 上海市教委科研创新项目(08YZ94)
关键词 拟线性椭圆方程 伪特征值 共振 quasilinear elliptic equation ~ pseudo-eigenvalue resonance
  • 相关文献

参考文献14

  • 1BROWDER F E. Existence theorems in partial equations [J] Proc Symp Pure Mathematics, 1970,16.1 - 60.
  • 2LANDESMAN E M, LAZER A C. Nonlinear perturbations of a linear elliptic boundary value problem at resonance [J]. J Math Mech, 1970,19:609 - 623.
  • 3SHAPIRO V L. Psuedo-Eigenvalue and quasilinear elliptic systems[J] Nonlirear Analysis,2001,47: 5 065 - 5 076.
  • 4SHAPIRO V L. Quasilinear ellipticity and the first eigenvalue[JJ. Comm Partial Differential Equations, 1991,16: 1 819- 1 855.
  • 5RUMBOS A. A semilinear elliptic boundary value problem at resonance where the nonlinearity may grow linearly [J]. Nonlinear Analysis,1991,16:1 159- 1 168.
  • 6CONTRERAS M. Double resonance for quasilirtear elliptic higher order partial differential equatiom between the first and second eigenvalues[J]. Nonlinear Analysis, 1995, 25(3) :1 257- 1 281.
  • 7CHUNG Cheng-kuo. On the solvability of a quasilinear elliptic resonance problem near its first eigenvalue[J]. Journal of Mathematical Analysis and Applications,1999,234: 91 - 108.
  • 8贾高.Stolarsky平均的几个注记[J].上海理工大学学报,2005,27(5):406-408. 被引量:1
  • 9贾高.目标流形为Heisenberg群映射的紧性问题[J].上海理工大学学报,2006,28(4):317-319. 被引量:1
  • 10耿进龙,贾高.含有卷积核的线性Volterra积分微分方程的数值解[J].上海理工大学学报,2008,30(1):22-26. 被引量:3

二级参考文献19

  • 1钟献词,李显方.第二类 Fredholm积分方程的泰勒展开解法[J].数学理论与应用,2004,24(3):21-23. 被引量:2
  • 2JIA G, CAO J D. A new upper bound of the logarithmic mean[J]. J Ineq Pure and A ppl, 200 3 , 4 ( 4 ) :1~5.
  • 3Stolarsky K B. Generalizations of the logarithmic mean[J]. J Math Mag,1975,48(2):87~92.
  • 4Witkowsky A. A new proof of the monotonicity of power means[ J ]. J Ineq Pure and Appl Math, 2004, 5 ( 1 ): 1 ~15.
  • 5框继昌.常用不等式(第3版)[M].湖南:湖南教育出版社,2003..
  • 6杨镇杭.关于指数平均和对数平均[J].数学的实践与认识,1987,(4):76-78.
  • 7Beckenbach B F, Bellman R. Inequalities[M]. Berlin:Spring-Verlag, 1961.
  • 8Neuman E. A generalization of an inequality of Jia and Cao[J]. J Ineq Pure and Appl Math, 2004, 5 (1): 21~28.
  • 9ZIEMER W P.Weakly Differentiable Functions[M].New York:Springer-Verlag,1989,31-56.
  • 10HAJLASZ P,KOSKELA P.Sobolev met Poincaré[J].Mem Amer Math Soc,2000,145:1-101.

共引文献2

同被引文献9

  • 1TURESSON B O.Nonlinear potential theory and weighted sobolev spaces[M].New York:Springer Verlag,2000.
  • 2SHAPIRO V L.Singular quasilinearity and higher eigenvalues[M].Providence,R.I.:Memoirs of the American Mathematical Society,2001.
  • 3RUMBOS A,SHAPIRO V L.Jumping nonlinearities and weighted Sobolev spaces[J].Journal of Differential Equations,2005,(214):326-357.
  • 4JIA Gao,ZHAO Qiang,DAI Chunyan.On the solvability of superlinear and nonhomo-geneous quasilinear equations[J].Boundary Value Problems,2009,(1):1-10.
  • 5ROBINSON S B.On the second eigenvalue for nonhomogeneous quasilinear operators[J].SLAM J.Math.Anal,2004,35(5):1 241-1249.
  • 6NIRENBERG L.Topics in nonlinear functional analysis[M].New York:Courant Insttitufe of Math.Sci.,1974.
  • 7RAO M M.Measure theory and integration[M].New York:Wiley,1987.
  • 8贾高,赵青,戴春艳.加权p-Laplacian方程的特征值问题[J].上海理工大学学报,2009,31(4):311-314. 被引量:1
  • 9王万义,孙炯,等.加权的Friedrichs不等式[J].工程数学学报,2002,19(2):139-142. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部