期刊文献+

业务自相似性分析方法研究

Analytical Approaches to Traffic Self-similarity
下载PDF
导出
摘要 自相似性是真实网络业务数据中的一个主要特性,其强度大小对网络性能、流量控制及排队分析结果有重要影响,因此,准确计算表征自相似性强弱的参数Hurst值是一项很有意义的研究课题.从时域与频率域两个方面出发,综述了各种计算方法的基本原理,介绍了各自统计量定义方法,并对各种方法的结果进行横向比较,分析了各自的影响因素,最后对下一步研究方向进行了预测. It is significant to calculate accurately Hurst Parameter value representing the degree of self-similarity because self-similarity is the primary characteristic of traffic running in the actual networks and its intensity has an important influence on network performance, traffic control and queuing result. This paper reviews the basic principle of various published methods to estimate Hurst value from the perspectives of time domain and frequency domain, defines or presents in detail the statistics used by each method. Based on the comparison made among the methods, we analyze the impact factors and provide some guidance and forecast for future studies.
出处 《东莞理工学院学报》 2009年第1期75-81,共7页 Journal of Dongguan University of Technology
关键词 自相似性 Hurst R/S法 时间方差法 周期图法 小波分析法 self-similarity hurst R/S estimator time-variance estimator periodogram-based analysis wavelet-based analysis
  • 相关文献

参考文献11

  • 1Will E Leland, et al. On the Self-Similar Nature of Ethernet Traffic (Extended Version) [J]. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
  • 2Mark E Crovella, Azer Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and Possible Cause [J]. IEEE/ACM Transactions on Networking, 1997, 5(6): 835-846.
  • 3Jan Beran, et al. Long-Range Dependence in Variable=Bit=Rate Video Traffic [J]. IEEE Transactions on Communications, 1995, 43 (234): 1566=1579.
  • 4Diane E Duffy, et al. Statistical Analysis of CCSN/SS7 Traffic Data from Working CCS Subnetworks [J], IEEE J, Select. Areas Commun. 1994, 12(3): 544-551.
  • 5Tsybakov B, Georganas N D. On Self-similar Traffic in ATM Queues: Definitions, Overflow Bound and Cell Delay Distribution [J]. IEEE/ACM Transactions on Networking, 1997, 5(3): 397-409.
  • 6Patrice Abry, Darryl Veitch. Wavelet Analysis of Long-Range-Dependence Traffic [J]. IEEE Transactions on Information Theory,1998, 44(!): 2-15.
  • 7Marl a E. G6mez, Viconte Santonja. Self-similarity in I/O Workload: Analysis and Modvling [C]. In Proc. MASCTS'1999, 234-242.
  • 8Murad S. Taqqu, Vadim Teverovsky, Walter Willinger. Estimators for Long-Range Dependence: an Empirical Study [J]. Fractals, 1995, 3(4): 785-798.
  • 9Murad S Taqqu, Vadim Teverovsky. Semi-parametric graphic estimation techniques for long-memory data [C]. In Athens Conference on Applied Probability and Time Series Analysis. Volume II: Time series Analysis in Memory of E. J. Hannan, New York, 1996, 420-432.
  • 10Fei Xue, Ljiljana Trajkovi'c. Performance Analysis of a Wavelet-based Hurst Parameter Estimator for Self-similar Traffic [C]. In SPECT'2K, Vanacouver, BC, Canada, July 2000, 294-298.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部