摘要
得到了一些特殊图类的解析值.利用数学归纳和分类讨论的方法,给出固定阶数的单圈图的解析的紧的界.证明了在所有阶数为n的单圈图中,图△_(n-3)取得最小的a(G)和b(G);图K_(1,n-1)^+取得最大的a(G)和b(G).这里图△_(n-3)是由联结K_3一个顶点和P_(n-3)的一个端点而得到,图K_(1,n-1)^+是由联结图K_(1,n-1)中两个度为1的顶点而得到.
By the principle of mathematical induction and classified discussion, the sharp bounds for dissection of unicyclic graphs of a fixed order were given. Among all unicyclic graphs of order n(n ≥ 6), the graph △n-3 has the minimum a(G) and b(G), and the graph K1,n-1^+ has maximum a(G) and b(G), where △n-3 denotes the graph obtained from K3 and K1,n-1^+ by joining a vertex of K3 to one endvertex of Pn-3, and K1,n-1^+ denotes the graph K1,n-1^+ obtained from K1,n-1 by joining its two vertices of degree one.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第1期13-21,42,共10页
Journal of East China Normal University(Natural Science)
基金
商洛学院科研基金(07SKY021)
关键词
单圈图
界
解析
unicyclic graphs
bound
dissection