期刊文献+

Banach空间上相容算子方程的最小范数解的扰动分析 被引量:1

Perturbation analysis for the minimal norm solution of the consistent operator equation in Banach spaces
下载PDF
导出
摘要 设X,Y是Banach空间,T是D(T)СX到Y的稠定闭线性算子而且它的值域在Y闭.设相容算子方程Tx=b的非相容扰动为‖(T+δT)x-■‖=min■‖(T+δT)z-■‖,这里δT是X→Y的有界线性算子.在某些条件下(比如X,Y是自反的),设上述方程的最小范数解为■_m,并设Tx=b的解集S(T,b)中的最小范数解为x_m.本文给出了当δ(Ker T,Ker(T+δT))较小时,(dist(■_m,S(T,b))/‖X_m‖的上界估计式. Let X, Y be Banach spaces and let T be a densely-defined closed linear operator from D(T) C to Y with closed range. Suppose the non-consistent perturbation of the consistent equation Tx = b is ||(T+δT)x-b^-|=minz∈D(T)||(t+δT)z-b^-||, where δT is a bounded linear operator from X to Y. Under certain conditions (e. g. X and Y are reflexive Banach spaces), let x^-m be the minimal norm solution of above equation and let Xm be minimal norm solution of the set S(T, b) ={x ∈ D(T)| Tx = b}. In this paper, wegive an estimation of the upper bound of dist(x^-m,S(T,b))/||xm|| when δ(Ker T, Ker (T + δT)) is small enough.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期48-52,共5页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金项目(10771069) 上海市重点学科建设项目(B407)
关键词 闭值域 约化最小模 最小范数解 closed range reduced minimum modulus minimal norm solution
  • 相关文献

参考文献9

  • 1KATO T. Perturbation Theory for Linear Operators [M]. 2rid Edition. New York: Springer-Verlag, 1984.
  • 2CAMPBELL S L, MEYER C D. Generalized Inverse of Linear Transformations[M]. London: Pitman, 1979.
  • 3NASHED M Z. Perturbations and approximations for generalized inversed and linear operator equations [M]// NASHED M Z. Generalized Inverses and Applications. New York: Academic Press, 1976.
  • 4CHEN G, XUE Y. Perturbation analysis for the operator equation Tx = b in Banach spaces [J]. Journal of Mathematical Analysis and Application, 1997, 212: 107-125.
  • 5DING J, HUANG L J. A generalization of a classic theorem in the perturbation theory for linear operators [J]. Journal of Mathematical Analysis and Application, 1999, 239: 118-123.
  • 6CHEN G, WEI Y, XUE Y. The generalized condition numbers of bounded linear operators in Banach spaces [J]. Journal of Australian Math Society, 2004, 76: 281-290.
  • 7DUNFORD N, SCHWARTZ J G. Linear Operators I [M]. New York: Interscience Publiers, 1958.
  • 8KREYSZIG E. Introductory Functional Analysis with Applications [M]. New York: Wiley, 1978.
  • 9XUE Y. A new characterization of the reduced minimum modulus of an operator on Banach spaces [J]. Publicationes Mathematicae-Debrecen, 2008, 72(1-2): 155-166.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部