摘要
定义复数域■上的Laurent多项式代数■[t,t^(-1)]的(r,s)-微分算子■_(r,s).给出该微分算子及{t^(±1}生成的结合代数即(r,s)-微分算子代数的一组基,并在此基础上研究了(r,s)-微分算子代数的导子代数及其非平凡二上圈.
This paper defined the (r,s)-differential operator of the algebra of Laurent poly- nomials over the complex numbers field. Let 79r,8 be the associative algebra generated by {t^±1} and the (r, s)-differential operator, which is called (r, s)-differential operators algebra. In this paper, the derivation algebra of Dr,s and its Lie algebra Dr,s^- were described and all the non-trivial 2-cocycles were determined.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第1期94-103,共10页
Journal of East China Normal University(Natural Science)
基金
教育部长江学者创新团队(10671027)
国家自然科学基金(10671027,10701019)
浙江省自然科学基金(Y607136)
关键词
(r
s)-微分算子
导子
二上圈
(r, s)-differential operator
Derivation
2-cocycle.