期刊文献+

二维短沟道MOSFET阈值电压分析模型 被引量:3

Analysis of 2-D Short-Channel MOSFET Threshold Voltages Model
下载PDF
导出
摘要 随着器件尺寸的进一步减小,由量子效应导致的能带分裂对MOSFET中阈值电压特性的影响变得越来越重要。提出了一个包含量子效应(QME)的短沟道金属氧化物场效应晶体管(MOSFET)分析的阈值电压模型,该模型建立在求解包含量子校正的泊松方程的基础上。分析在泊松方程中考虑量子效应后建立的分析的阈值电压模型可知:随着器件尺寸的减小,由量子效应和短沟道效应引起的阈值电压的升高变得越来越严重。本模型的优点是没有引入额外的物理参数。 The split of the band caused by the quantum mechanism (QM) effects plays a more and more significant effect on the threshold voltage properties in MOSFET as the CMOS technology scales down. An analytical 2D model taking into account the QM effects for the threshold voltages characteristics of shortchannel MOS transistors was proposed on the basis of the solution of the developed quantum correction Poisson equation. This model clearly illustrates the increased threshold voltage caused by QM effects, and the shortchannel effects become more obvious after QM effects were considered. The attractive feature in this model is that no addition parameter is used to take into account the quantum effects.
出处 《半导体技术》 CAS CSCD 北大核心 2009年第3期254-257,共4页 Semiconductor Technology
基金 国家自然科学基金资助项目(60606016)
关键词 深亚微米半导体器件 解析阈值电压模型 量子机制效应 sub-micron MOSFET analytical threshold model quantum mechanism effect
  • 相关文献

参考文献17

  • 1van DORT M, WOERLEE P, WALKERA. A simple model for quantization effects in heavily-doped silicon MOSFET' s at inversion conditions [J]. Solid State Electron , 1994,37 (3) : 411-414.
  • 2OGAWA M, TSUCHIYA H, MIYOSHI T. Quantum electron transport modeling in nano-scale devices [J]. IEICE Trans Electron,2003, E86-C(3) :363-371.
  • 3LI Y, TANG T W, WANG X. Modeling of quantum effects for uhrathin oxide MOS structures with an effective potential [J]. IEEE Trans Nano-Technol,2002,1 (4) :238-242.
  • 4RAMEY S M , FERRY D K. Modeling of quantum effects in ultra small FD-SOI MOSFETs with effective potentials and three-dimensional Monte Carlo [J]. Physics: B,2002,314(1- 4) :350-353.
  • 5LI Y, TANG T W, YU S M A. Quantum correction model for nano-scale double-gate MOS devices under inversion conditions [J].Comput Electro,2003, 2(2-4) :491-495.
  • 6MAY T, LIU LT, DENG W, et al. A new charge model including quantum-mechanical effects in MOS structure inversion layer [J]. Solid-State Electronic, 2000,44 (9) : 1697- 1702.
  • 7STEM F, HOWARD W E. Properties of semiconductor surface invel, sion layers in the electric quantum limit [J]. Phys Rev, 1967,163(3) :816-835.
  • 8ANDO T, FOWLER A B , STEM F. Electronics properties of two-dimensional systems [J]. Rev Mod Phys, 1982, 54 (2) :437-672.
  • 9LOS H, BUCHANAN D A, TAUR Y, et al. Quantummechanical modeling of electron tunneling current from the inversion layer of ultra-thin oxide nMOSFET' s [J]. IEEE Electron Device Lett, 1997,18 (5) : 209-211.
  • 10TRELIAKIS A, GALICK A T, RAVAIOLI G, et al. Iteration scheme for the solution of the two-dimensional Schr odinger- Poisson equations in quantum structures [J]. Appl Phys, 1997,81 (5) :7880-7884.

二级参考文献20

  • 1IWM H. CMOS down.sizing toward sub-0.1μm [J] ,SSE,2004, 48(4) : 497-503.
  • 2DORIS B, MEIKEI L, KANARSKY T, et al, Extreme scaling with ultra-thin SOI channel MOSFETs [C]// IEEE Int Conf on IEDM. San Francisco, USA,2002 : 267-270.
  • 3MEIND J D, CHEN Q, DAVIS J A. Limit on silicion nanoeleetronics for terascale integration [J]. Science, 2001, 293(14) : 2044-2049.
  • 4MAO L F. Temperature dependence of the tuneling current in MOS devices due to the coupling between the longitudinal and transverse components of the electron thermal energy [J]. APL,2007,90,183511 : 1-3.
  • 5LEE J, SU C B. Near ballistic transport in a nonparabolic-band structure for n- and p-GaAs [J] .IEEE Trans on ED, 1982,29 (5) :933-935.
  • 6PIDGEON C R, BROWN R N, Interband magneto absorption and faraday rotation in InSb [J]. Phys Rev, 1966, 146(2): 575-583.
  • 7SANDBORN P A, RAO A, BLAKEY P A. An assessment of approximate nonstationary charge transport modelsused for GaAs device modeling [J]. IEEE Trans on ED, 1989,36(7): 1244-1253.
  • 8PERSSON A, COHEN R M. Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells [J]. Phys Rev B, 1988,38 (8) : 5568-5575.
  • 9LEI X L,TING C S.Theory of nonlinear electron transport for solids in a strong electric field [J] .Phys Rev B, 1984,30(8) : 4809-4812.
  • 10LEI X L,TING C S.Green's-function approach to nonlinear electronic transport for an electron impurityphonon system in a strong electrie filed [ J]. Phys Rev, B, 1985 32(2) : 1112-1132.

同被引文献24

  • 1杨志民,马义德,马永杰,摆玉龙,杨鸿武.基于0.13μm工艺的低电压CMOS场效应管输出电导[J].吉林大学学报(工学版),2009,39(1):229-233. 被引量:1
  • 2李艳萍,徐静平,陈卫兵,邹晓.深亚微米MOSFET阈值电压模型[J].微电子学,2005,35(1):40-43. 被引量:3
  • 3包军林,庄奕琪,杜磊,李伟华,万长兴,张萍.n/p沟道MOSFET1/f噪声的统一模型[J].物理学报,2005,54(5):2118-2122. 被引量:14
  • 4Shojiro A,Yasuo W.Technology challenge for integration near and below0.1μm. Proceedings of Tricomm . 1997
  • 5Ma S T,Brews J R.Comparison of Deep-submicrometer conventional and retrograde n-MOSFET‘s. IEEE Transactions on Electron Devices . 2000
  • 6Aoki M,Ishii T,Yoshimura T,et al. IEEE Electron Device Letters . 2000
  • 7Technology Modeling Associates,Inc.Medici Two-Dimensional Device Simulation Program Version V-2003.12User‘s Manual. . 2003
  • 8S. Persson P. -E. Hellberg and S. -L. Zhang.A charge sheet model for MOSFETs with an abrupt retrograde channel Part I. Drain current and body charge. Solid State Electronics . 2002
  • 9S. Venkatesan,J. W. Lutze,C. Lage, et al.Device drive current degradation observed with retrograde channel profiles. IEEE IEDM Technical Digest . 1995
  • 10赵志刚,杜磊,包军林,阎家铭,张莹,杨丽侠.用于DC/DC转换器的VDMOS器件抗辐照性能与低频噪声研究[J].混合微电子技术,2007,18(4):1-4. 被引量:2

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部