期刊文献+

混合神经网络和混沌理论的股票价格预测研究 被引量:4

A Method of Stock Price Prediction Based on Chaos Theory and Neural Networks
下载PDF
导出
摘要 针对股票时间序列的非线性特点,结合混沌理论和神经网络理论,提出了基于混沌理论的股票价格神经网络预测方法。同时利用重构相空间的嵌入维数确定神经网络的结构,对实际的股票时间序列预测结果表明,该方法能有效地进行短期预测,在股票时间序列预测中有广泛的实用价值。 A method of stock price prediction based on chaos theory is presented by hypothesis of stock time series being non- linear and by taking advantages of BP neural network and chaos theory. Meanwhile, structures of neural network are determined by embedding dimension of phase space reconstruct. Predicting results for practical stock time series show that the method is able to do short- term prediction effectively, thus it can be widely used in stock time series prediction.
作者 叶晓舟 陈敏
出处 《航空计算技术》 2009年第1期18-21,共4页 Aeronautical Computing Technique
基金 湖南省高等学校科学研究项目(08C249)
关键词 混沌 时间序列 股票价格 神经网络 chaos time series stock price neural network
  • 相关文献

参考文献16

二级参考文献118

  • 1赵鸿,柴路,王浩,刘书声.互信息在时间序列分析中的应用[J].应用科学学报,1996,14(1):48-52. 被引量:11
  • 2[1]Packard N H, Crutchfield J P, Farmer J D. Geometry from a Time Series[J]. Physical Review Letters,1980,45:712-716.
  • 3[2]Takens F. Detecting Strange Attractors in Turbulence[A]. In:Rand D,Young L S eds.Dynamical Systems and Aturbulence, Lecture Notes in Mathematics [C]. New York:Springer-Verlag,1981.336-381.
  • 4[3]Lai Y C, Lerner D. Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series[J]. Physica D,1998,115:1-18.
  • 5[4]Theiler J,Eubank S. Testing for Nonlinearity in Time Series: The Method of Surrogate Data[J]. Physica D,1992,58:77-94.
  • 6[5]Kugiumtzis D, Lillekjendlie B. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series the Role of the Time Window Length[J]. Physica D,1996,95:13-28.
  • 7[6]Cao Liang-yue, Alistair Mees. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series[J].Physica D,1997,110:43-50.
  • 8[7]Abarbanel, Henry D I, Reggie B. The Analysis of Observed Chaotic Data in Physical Systems[J]. Rev Mod Phys, 1993,65(4):1331-1392.
  • 9[8]Wayland R, Bromley D, Pickett D. Recognizing Determinism in a Time Series[J].Phys Rev Lett,1993,70(5):580-582.
  • 10[9]Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors [J]. Physica D,1983,9:189-208.

共引文献303

同被引文献37

  • 1裴玉龙,王晓宁.基于BP神经网络的交通影响预测模型[J].哈尔滨工业大学学报,2004,36(8):1034-1037. 被引量:22
  • 2陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真学报,2007,19(11):2527-2529. 被引量:104
  • 3Cristianini N,Shawe-Taylor J.An introduction support vector machines and other kernel-based learning methods[M].London:Cambridge University Press,2004.
  • 4Suykens J A K.Least squares support vector machines for classification and nonlinear modeling[J].Neural Network World,2000,10(1):29-48.
  • 5MacKay D J C.Bayesian interpolation[J].Neural Computation,1992,4(3):415 -447.
  • 6Packard N H.Geometry from a Time series[J].Phys Rev Lett,1980,45(9):712 -716.
  • 7Brause R,Langsdorf T,Hepp M.Neural data mining for credit card fraud detection[C].in Proc.of 11th IEEE Int.Conf.on Tools with Artificial Intelligence,Chicago,IL,USA,1999,9:103-106.
  • 8F. Takens, in.. D.A. Rand, L.S. Young ..Dynamical Systems and Turbulence[J].Lecture Notes in Mathematics, vol. 898 Springer, Berlin, 1981, p. 336.
  • 9H.S.Kim , R. Eykholt , J.D.Salas. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D 127 (1999) 48-60.
  • 10周辉仁,郑丕谔.基于递阶遗传算法和BP网络的时间序列预测[J].系统仿真学报,2007,19(21):5055-5058. 被引量:28

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部