期刊文献+

改进型遗传神经网络在模式分类中的应用 被引量:1

Evolving neural network based on improved genetic algorithm for pattern classification
原文传递
导出
摘要 为研究图像和语音的模式分类,提出一种采用可变长度串遗传算法(VGA)的进化神经网络.该算法可以全局搜索优化神经网络的结构,找到神经网络接近最优的连接权,再通过反向传播算法(BP),在该优化结构中找到最优连接权.对语音数据和SPOT图像数据的验证结果表明,在模式分类中,采用该算法的分类器(VGA-BP)的分类性能较贝叶斯(Bayes)分类器、最近邻规则(k-NN)分类器具有更高的分类精度. An evolving neural network classifier using variable string genetic algorithm (VGA) was developed to study pattern classification for image and speech. The classifier could automat ically evolve the appropriate architecture of neural network and find a nearoptimal set of connection weights globally. Then the conformable connection weights for pattern classification could be found with backpropagation (BP) algorithm. Simulations on vowel data and SPOT multispectral image data show that the VGABP classifier has higher classification precision comparing with Bayes classifier and kNN classifier in pattern classification.
作者 傅晓阳 郭晨
出处 《大连海事大学学报》 CAS CSCD 北大核心 2009年第1期85-88,共4页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(60774016)
关键词 可变长度串遗传算法(VGA) 进化神经网络(EANN) 模式分类 variable string genetic algorithm(VGA) evolution ary artificial neural network(EANN) pattern clas si fication
  • 相关文献

参考文献10

  • 1TOU T T, GONZALEZ R C. Pattern Recognition Principles[ M]. New York:Addison-Wesley, 1974.
  • 2FILIPPI A M, JENSEN J R. Fuzzy learning vector quantization for hpyerspectral eoastal vegetation classification [ J ]. Remote Sensing of Environment, 2006,100 (4) : 512-530.
  • 3PAL S K, BANDYOPADHYAY S, MURTHY C A. Genetic classifiers for remotely sensed images:comparison with statndard methods [ J ]. International Journal of Remote Sensing, 2001, 2(13): 2545-2569.
  • 4Van COILLIE F M B, VERBEKE L P C, De WULF R R. Previously trained neural networks as ensemble members: knowledge extraction and transfer[J ]. International Journal of Remote Sensing, 2004, 25(21):4843-4850.
  • 5YAO X. Evolving artificial neural networks[J]. Proceeding of the IEEE, 1999, 87(9) :1423-1447.
  • 6Van COILLIE F M B, VERBEKE L P C, De WULF R R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders [J ]. Remote Sensing of Environment, 2007,110 (4) : 476- 487.
  • 7GOLDBERG D E. Genetic Algorithms in Search, Optimization and Machine Learning[ M]. New York: Addison-Wesley, 1989.
  • 8LIU Zheng-jun, WANG Chang-yao, LIU Ai-xia, et al. Evolving neural network using real coded genetic algorithm (GA) for multi-spectral image classification [ J]. Future Generation Computer Systems, 2004, 20 (7) : 1119-1129.
  • 9DUDA R O, HART P E, STORK D G. Pattern Classification[M] .2nd Ed. New York:Wiley,2001:311.
  • 10KUKOLICH L, LIPPMANN R. LNKnet User's Guide [K/OL]. Revision 4. MIT Lincoln Laboratory, 2004. http ://www. ll. mit. edu/IST/lnknet

同被引文献6

  • 1吴静,柳世考,邓堃.基于改进BP神经网络的故障诊断方法[J].工业仪表与自动化装置,2007(3):45-48. 被引量:7
  • 2LIU Zhengjun, WANG Changyao, LIU Aixia, et al. Evolving Neural Network Using Real Coded Genetic Algorithm(GA) for Multi-spectral Image Classification [ J ]. Future Generation Computer Systems ,2004,20 (7) : 1119 - 1129.
  • 3Van COILLIE F M B, VERBEKE L P C, De WULF R R. Feature Selection by Genetic Algorithms in Object-based Classification of IKONOS Imagery for Forest Mapping in Flanders [ J ]. Remote Sensing of Environment, 2007, 110 (4) :476 -487.
  • 4NARAYANAN A, MOORE M. Quantum-inspired Genetic Algorithms[ C]//Proceedings of IEEE International Con- ference on Evolutionary Computation, Nagoya, Japan, 1996 : 61 - 66.
  • 5HAN K H, KIM J H. Genetic Quantum Algorithm and Its Application to Combinational Optimization Problem [ C ]// Proceedings of the International Congress on Evolutionary Computation,2000 : 1354 - 1360.
  • 6HAN K H, KIM J H. Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization [ J ]. IEEE Trans Evolutionary Computation, 2002,6 (6) : 580 - 593.

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部