期刊文献+

FCM算法中参数确定方法的探讨

Research on the Method of Determining the Parameters of FCM
下载PDF
导出
摘要 模糊c-均值(FCM)算法是目前应用最为广泛的一种模糊聚类算法,但其中的两个重要参数模糊加权指数m和聚类的分类数c在进行聚类分析前必须给出恰当的赋值,否则将直接影响FCM算法的分类效果。本文就这两个参数的确定方法进行了一定的探讨。 Fuzzy-Mean (FCM) clustering algorithm is one of the widely applied algorithms in the fuzzy clustering, in which two important parameters: fuzzy weighting exponent and the number of clustering must be given appropriate assignment before the clustering analysis. Otherwise, the result of clustering by FCM will be affected. We will discuss the method of determining the two parameters in this paper.
作者 姜琴 甘海涛
出处 《武汉工业学院学报》 CAS 2009年第1期42-44,63,共4页 Journal of Wuhan Polytechnic University
关键词 FCM 加权指数 分类数 FCM weighting exponent the number of clustering
  • 相关文献

参考文献13

二级参考文献37

  • 1张伟.Fuzzy聚类算法中的一个新算法--Fuzzy PFS聚类法[J].模糊数学,1987,3(4):51-56.
  • 2Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981.
  • 3Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.
  • 4Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67.
  • 5Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633.
  • 6Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 7Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354.
  • 8Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 9Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117.
  • 10Baraldi A, Blonda P, Parmiggiani F et al. Model transitions in descending FLVQ. IEEE Transactions on Neural Networks,1998,9(5) :724-737.

共引文献540

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部