摘要
复数二元方程z2+w2=1包含了圆x2+y2=1及双曲线x2-y2=1,用二阶常微分方程求z2+w2=1的参数解(即化为参数方程),然后对这个参数解作出限制,既可得到三角函数的余弦与正弦,又可得到双曲余弦与双曲正弦.仿此做法,由旋转变换导出双曲旋转变换,再用待定系数的方法推出狭义相对论的洛伦兹变换公式.
Complex binary equation z2+w2=1 contains x2+y2 = 1 and x2-y2= 1. By solving equation z2+w2=1 subjected to some conditions through th second order differential equation,wenot only get sine and cosine of triagle function, but also bicurve sine and bicuuve consine. Imitation this way,we can deduce bicurve spinning transform form of Einstein's special theoryof relativity.
出处
《南方冶金学院学报》
1998年第1期64-68,共5页
Journal of Southern Institute of Metallurgy
关键词
正弦
余弦
双曲正弦
双曲余弦
双曲旋转
Sine,Cosine, Bicurve sine, Bicurve cosine, Bicurve spinning