期刊文献+

一种基于KNN-SVR的基因表达缺失值的估计方法 被引量:1

Missing Value Estimation for Microarray Expression Data Based on KNN-SVR
下载PDF
导出
摘要 为了消除不相似基因对基因表达谱中缺失值估计的影响,提出了一种基于KNN-SVR的缺失值估计方法。该方法先通过最近邻法选出与目标基因表达最相似的一组完全基因,再用这些基因通过支持向量回归对缺失值进行估计。还提出了用标准化偏差的方差来度量算法的稳定性和估计值的可信度。该方法通过对基因的过滤提高了缺失值估计的有效性。实验结果表明,KNN-SVR法具有较高的估计精度和稳定性。 In order to exclude the effect of dissimilar genes, a new missing value estimation method based on KNN-SVR is proposed. This method selects a group of complete genes most similar to target genes by K-nearest neighbor (KNN) and uses them to estimate missing values by Support Vector Regression (SVR). This paper also suggests using the variance of Normalized Root Mean Squared Error (NRMSE) to measure the stability of estimation methods and the reliability of estimated values.This method improves the validity of missing value estimation by filtering genes. The experiment results show that KNN-SVR method has better accuracy and stability.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2009年第1期124-128,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60471003)
关键词 基因芯片 缺失值估计 最近邻法 支持向量回归 相似性 microarray missing value estimation K-nearest neighbor support vector regression similarity
  • 相关文献

参考文献10

  • 1Olga T, Michael C, Sherlock G, et al. Missing Value Estimation Methods for DNA Microarrays[J]. Bioinformatics, 2001, 17: 520-525.
  • 2Oba S. A Bayesian Missing Value Estimation Method for Gene Expression Profile Data[J]. Bioinformatics. 2003, 19:2088 - 2096.
  • 3Kim H, Gene H G, Haesun P. Missing Value Estimation for DNA Microarray Gene Expression Data: Local Least Squares Imputation[J]. Bioinformatics, 2005, 2(21): 187- 198.
  • 4Wang X, Li A, Jiang Z H, et al. Missing Value Estimation for DNA Microarray Gene Expression Data by Support Vector Regression Imputation and Orthogvnal Coding Scheme[J]. BMC Bioinformatics, 2006, 7:32.
  • 5杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003,15(11):1580-1585. 被引量:141
  • 6Alon U, Barkai N, Nottennan D A, et al. Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays[J]. Proc. Natl. Acad. Sci., USA, 1999, 96(6): 6745-6750.
  • 7Golub T R, Slenim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring [J]. Science, 1999, 286(15): 531-537.
  • 8Nathalie P, Frank D S, Johan A K, et al. Systematic Benchmarking of Microarray Data Classification: Assessing the Role of Non-linearity and Dimensionality Reduction[J]. Bioinformatics, 2004, 20(17) : 3185 - 3195.
  • 9http://genome-www. stanford.edu/Human - CellCyele/HeLa/.
  • 10Whitfield M L, Sherlock G, Saldanha A J, et al. Identification of Genes Periodically Expressed in the Human Cen Cycle and Their Expression in Tumors[J]. Molecular Biology of the Cell, 2002, 13:1977- 2000.

二级参考文献25

  • 1Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 2Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 3Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 4Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 5Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 6Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 8Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.
  • 10Collobert R. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.

共引文献140

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部