摘要
为了消除不相似基因对基因表达谱中缺失值估计的影响,提出了一种基于KNN-SVR的缺失值估计方法。该方法先通过最近邻法选出与目标基因表达最相似的一组完全基因,再用这些基因通过支持向量回归对缺失值进行估计。还提出了用标准化偏差的方差来度量算法的稳定性和估计值的可信度。该方法通过对基因的过滤提高了缺失值估计的有效性。实验结果表明,KNN-SVR法具有较高的估计精度和稳定性。
In order to exclude the effect of dissimilar genes, a new missing value estimation method based on KNN-SVR is proposed. This method selects a group of complete genes most similar to target genes by K-nearest neighbor (KNN) and uses them to estimate missing values by Support Vector Regression (SVR). This paper also suggests using the variance of Normalized Root Mean Squared Error (NRMSE) to measure the stability of estimation methods and the reliability of estimated values.This method improves the validity of missing value estimation by filtering genes. The experiment results show that KNN-SVR method has better accuracy and stability.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2009年第1期124-128,共5页
Journal of National University of Defense Technology
基金
国家自然科学基金资助项目(60471003)
关键词
基因芯片
缺失值估计
最近邻法
支持向量回归
相似性
microarray
missing value estimation
K-nearest neighbor
support vector regression
similarity