期刊文献+

一种改进的基于时域的红外弱小目标检测算法 被引量:1

An Improved Algorithm for Temporal Detection of Infrared Dim and Small Targets
下载PDF
导出
摘要 提出了一种基于时域的红外弱小目标检测算法。该方法根据目标与背景的时域特性,建立了不同像素类型的时域模型。首先,对不同像素模型的时域方差进行分析,滤除掉天空背景以及云内部的像素;然后,根据时域剖面线偏离其包络线的程度不同,对弱小目标进行检测。理论分析和实验结果表明文中算法对于低信噪比条件下的弱小目标检测,具有很好的检测性能。 An improved algorithm for temporal detection of infrared dim and small targets is presented. The temporal models for different pixel type are given according to temporal characteristics of the target and background. First, the temporal variance for different pixel models is studied and clean sky and cloud are re- moved, then the dim and small target is detected according to the discrepancy of the temporal profile and its envelope. The theoretical analysis and the experimental result prove the validity of the detection algorithm for small targets in low SNR.
作者 沈强 陈少冲
出处 《电子科技》 2009年第3期1-3,6,共4页 Electronic Science and Technology
基金 国家自然科学基金资助项目(60407012) 陕西省自然科学基金资助项目(2006F20)
关键词 物理电子学 时域模型 弱小目标 时域剖面线 目标检测 physical electronic temporal model dim and small target temporal profile target detection
  • 相关文献

参考文献1

二级参考文献21

  • 1张兵,卢焕章.云杂波背景图像序列中小目标检测算法研究[J].红外技术,2004,26(6):66-71. 被引量:5
  • 2Kemper P J, Dimarco J S. Imaging infrared seeker processing overview: image processing, adaptive thresholding, and track processing [ A ]. In: Proceedings of the SPIE Conference on Infrared Imaging Systems: Design, Analysis, Modeling, and Testing [ C ],Orlando, Florida, USA, 1999, 3701:266 ~ 273.
  • 3陈华明.[D].长沙:国防科技大学,2003.
  • 4Silverman J, Caefer C E, DiSalvo S, et al. Temporal filtering for point target detection in staring IR imagery: Ⅱ. recursive variance filter [ A ]. In: Proceeding of the SPIE Conference on Signal and Data Processing of Small Targets[C], Orlando, Florida, USA, 1998,3373: 44 ~ 53.
  • 5Reed I, Gagliardi R, Stotts L. Optical moving target detection with 3D matched filtering [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 327 ~ 335.
  • 6Reed I, Gagliardi R, Stotts L. A recursive moving-target-indication algorithm for optical image sequences [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26 (3): 434 ~ 439.
  • 7Blostein S D, Huang T S. Detecting small moving objects in image sequences using sequential hypothesis testing [J]. IEEE Transactions on Signal Processing, 1991, 39(7): 1611 ~ 1629.
  • 8Mooney J M, Silverman J, Caefer C E. Point target detection in consecutive frame staring infrared imagery with evolving cloud clutter [J]. Optical Engineering, 1995, 34(9): 2772 ~2784.
  • 9Silverman J, Mooney J M, Caefer C E. Temporal filters for tracking weak slow point targets in evolving cloud clutter [ J]. Infrared Physics and Technology, 1996, 37(6): 695 ~710.
  • 10Caefer C E, Silverman J, Mooney J M, et al. Temporal filtering for point target detection in staring IR imagery: I. damped sinusoid filters [ A]. In: Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets[C], Orlando, Florida, USA, 1998,3373:111 ~ 122.

共引文献4

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部