期刊文献+

带有成虫配对率的日本血吸虫病双宿主模型 被引量:1

A Dual-host Model of Schistosomiasis Japonicum with Mating Ratio
下载PDF
导出
摘要 本文讨论血吸虫病的Barbour双宿主模型的稳定性。在此基础上,为讨论终宿主群体的平均虫负荷,加入成虫配对率的概念,改进了这一模型。对于新模型,得到了其平衡点的存在性定理,给出相应的阈值并对可能存在的3种情形分类,得到了解的全局稳定性定理。本文还探讨了可能的控制措施对阈值和平衡点的影响,以及阈值的生物意义。 In this paper, the asymptotic stability of the Barbour dual-host model for transmission of schistosomiasis japonicum is studied. Moreover, an improved model is presented by using the concept of mating ratio, the average number of schistosome per person, and the corresponding threshold value, existence and stability of equilibriums are given. Influence on threshold value and equilibriums by possible controlling measures, as well as biological meanings of the threshold value have also been discussed.
作者 朱天佳
出处 《工程数学学报》 CSCD 北大核心 2009年第1期23-31,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金重点项目(10531030)
关键词 日本血吸虫病 双宿主模型 成虫配对率 基本再生数 全局渐近稳定性 合作系统 schistosomiasis japonicum dual-host mode mating ratio basic reproduction rate asymptotic stability cooperative system
  • 相关文献

参考文献18

  • 1吴开琛.血吸虫病数学模型和传播动力学及其应用[J].中国热带医学,2005,5(4):837-844. 被引量:15
  • 2Macdonald G. The dynamics of Helminth infections, with special reference to schistosomes[J]. Trans R Soc. Trop Med Hyg, 1965, 59:489-506.
  • 3Baxbour A D. Modeling the transmission of schistosomiasis: an introductory view[J]. Am J Trop Med Hyg, 1996, 55:135-143.
  • 4Lajmanovich A, Yorke J. A deterministic model for gonorrhea in nonhomogeneous population[J]. Math. Biosci, 1976, 28:221-236.
  • 5Hirsch M W. The dynamical systems apprach to differential equations[J]. Bull Am Math Soc, 1984, 11: 1-64.
  • 6Smith H L. Cooperative systems of differential equations with concave nonlinearities[J]. Nonlinear Analysis, 1986, 10:1037-1052.
  • 7蒋继发.一类合作系统的渐近性态的代数判别[J].系统科学与数学,1990,10(1):46-56. 被引量:2
  • 8Smith H L. Competing subcommunities of mutuality and a generalized kamke theorem[J]. SIAM J App Math, 1986, 46:856-874.
  • 9Nasell I, Hirsch M W. The transmission dynamics of schistosomiasis[J]. Comm on Pure and Applied Math, 1973, 26:395-453.
  • 10吴建宏等.日本血吸虫病的传播动力学模型(I)定性分析.高校应用数学学报,1987,2:352-362.

二级参考文献8

  • 1吴开琛.疟疾数学模型和传播动力学[J].中国热带医学,2004,4(5):873-876. 被引量:13
  • 2吴建宏,高校应用数学学报,1987年,2卷
  • 3匿名著者,矩阵论.下
  • 4Macdonald G. The dynamics of helminth infections, with special reference to schistosomes[J]. Trans R Soc. Trop Med Hyg, 1965,59:489 ~ 506.
  • 5Barbour AD. Modeling the transmission of schistosomiasis: an introductory view[J]. Am J Trop Med Hyg, 1996,55(Suppl): 135 ~ 143.
  • 6Woolhouse MEJ. On the application of mathematical models of schistosome transmission dynamics, Ⅰ [ J] . Natural transmission. Acta Trop, 1991,49:241 ~ 270.
  • 7Woolhouse MEJ. On the application of mathematical models of schistosome transmission dynamics, Ⅱ.Control[J]. Acta Trop, 1992,50:189 ~ 204.
  • 8Williams GM, et al. Mathmatical modeling of schistosomiasis japonica:comparison of control strategies in the People's Republic of China[J]. Acta Trop, 2002,82: 253~ 262.

共引文献15

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部