期刊文献+

整数环上乘法噪声多项式插值算法的研究与改进

Study and Improvement of the Multiplicative Noisy Polynomial Interpolation Algorithm on Integral Ring
下载PDF
导出
摘要 乘法噪声多项式插值问题在密码理论和编码理论研究中有着重要的应用。本文对Gathen和Shp-arlinski提出的整数环上乘法噪声多项式插值算法进行了分析,提出了改进算法。采用Babai的最近向量格归约技术得到更精确的估计向量,再计算出插值多项式的倍式多项式的系数,从而计算出原插值多项式的系数。改进算法降低了乘法近似黑盒的询问初值,提高了算法初始化阶段的效率。 The multiplicative noisy polynomial interpolation has important applications in cryptography and coding theory. This paper analyzes this algorithm on integral ring presented by Gathen and Shparlinski and presents an improved algorithm. By the lattice reduction technique on the nearest vector presented by Babai, a more accurate estimate vector can be obtained and the coefficients of the multiple polynomial of the interpolation polynomial can be computed. Then the coefficients of the original interpolation polynomial can be computed. The improved algorithm reduces the initial query value input to the approximate multiplicative black box and enhances the algorithm efficiency.
出处 《工程数学学报》 CSCD 北大核心 2009年第1期32-36,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60573043 60773175 60773003)
关键词 多项式插值 乘法近似黑盒 格归约 polynomial interpolation multiplicatively approximate black box lattice reduction
  • 相关文献

参考文献9

  • 1杨建伟,程正兴,杨守志.M-带正交插值小波的构造[J].工程数学学报,2006,23(4):737-740. 被引量:2
  • 2方逵.保形几何Hermite插值[J].工程数学学报,2005,22(3):513-517. 被引量:5
  • 3Boneh D, Venkatesan R. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes[C]// Advances in Cryptology-Crypto'96(LNCS 1109) Berlin: Springer-Verlag, 1996, 129-142.
  • 4Shparlinski I E. Sparse polynomial approximation in finite fields[C]// Proc. 33rd ACM Symp. on Theory of Comput, New York: ACM Press, 2001, 209-215.
  • 5Shparlinski I E. Playing "Hide-and-Seek" in finite fields: Hidden number problem and its applications[C]// Proc. 7th Spanish Meeting on Cryptology and Information Security(Vol. 1): Univ. of Oviedo, 2002, 49-72.
  • 6Shparlinski I E. Noisy interpolation of sparse polynomials in finite fields[J]. Applicable Algebra in Engi- neering, Communication and Computing, 2005, 16(5): 307-317.
  • 7yon zur Gathen J, Shparlinski I E. Polynomial interpolation from multiples[C]// Proc.15th ACM-SIAM Symposium on Discrete Algorithms: SIAM, 2004, 1125-1130.
  • 8Babai L. On Lovasz' lattice reduction and the nearest lattice point problem[J]. Combinatorica, 1986, 6(1): 1-13.
  • 9Lenstra A K, et al. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261: 515-534.

二级参考文献14

  • 1Boehm W. Visual continuity[J]. CAD, 1998;20(6):307-311
  • 2DeBoor C. High accuracy geometric Hermite interpolation[J]. Computer Aided Geometric Design,1987;4(4):269-278
  • 3吴宗敏.参数有理三次GC^2Hermite插值[J].高校计算数学学报,1993,15(2):70-76.
  • 4Holling K. Geometric Hermite interpolation[J]. computer Aided Geometric Design, 1995;13(6):567-580
  • 5Holling K. Geometric Hermite interpolation with maximal order and smoothess[J]. Computer Aided Geometric Design, 1996;13(6):681-695
  • 6Imre J. Cubic parametric curve of given tangent and curvature[J]. Computer Aided Design, 1998;30(1):1-9
  • 7Ulrich R. On the local existence of the quadratic geometric Hermite interpolant[J]. Computer Aided Geometric Design, 1999;16(3):217-221
  • 8Dubuc S.Interpolation through an iterative scheme[J].J Math Anal Appl,1986,114:185-204
  • 9Daubechies I.Ten Lectures on Wavelets[M].Philadephia:CBMS-NSF Reg Conf Series on Appl Math SIAM,1992,61
  • 10Bi N,Dai X,Sun Q.Construction of compactly supported M-band wavelets[J].Appl Comput Harmon Anal,1999,6:113-131

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部