期刊文献+

随机波动率模型的最小熵鞅测度和效用无差别定价 被引量:7

Minimal Entropy Martingale Measure and Utility Indifference Pricing in the Stochastic Volatility Model
下载PDF
导出
摘要 本文研究了随机波动率模型的最小熵鞅测度和效用无差别定价。利用动态规划方法,得到了效用无差别定价满足的偏微分方程以及效用无差别套期保值策略。利用指数效用函数的最优投资策略与最小熵鞅测度之间的关系,证明了最小熵鞅测度的存在性,并利用偏微分方程给出了最小熵鞅测度。 This paper deals with the minimal pricing concerning a stochastic volatility model. entropy martingale measure and utility indifference The classical dynamic programming approach leads to the partial differential equation that satisfies utility indifference pricing, and obtains the indifference hedging strategy. Using the relationship between the minimal entropy martingale measure and the optimal investment strategy with an exponential utility, the existence of the minimal entropy martingale measure is proved, and can be expressed in terms of the solution to the PDE.
出处 《工程数学学报》 CSCD 北大核心 2009年第1期43-50,共8页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(70871058) 江苏省教育厅高校自然科学基础研究项目(07KJD110066) 江苏省博士后科研资助计划(苏人通[2005]354-355)
关键词 随机波动率模型 最小熵鞅测度 效用无差别定价 效用无差别套期保值策略 stochastic volatility model minimal entropy martingale measure utility indifference pricing utility indifference hedging
  • 相关文献

参考文献10

  • 1薛红.外汇期权的多维Black-Scholes模型[J].工程数学学报,2002,19(2):93-97. 被引量:8
  • 2Jackwerth J, Rubinstein. Recovering probability distributions from contemporaoneous security prices[J]. Journal of Finance, 1996, 51:1611-1631.
  • 3Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econ, 1982, 50:987-1007.
  • 4Engle R F, Mustafa C. Implied ARCH model from options prices[J]. Journal Econ, 1992, 52:289-331.
  • 5Becherer D. Utility-indifference hedging and valuation via reaction-diffusion systems[J]. Proceedings of the Royal Society Series A, 2004, 460:27-51.
  • 6Benth F E, Karlsen K H. A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets[J]. Pure Math, 2003, 5:1-21.
  • 7Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs[J]. Rev Fht Markets, 1989, 8:222-239.
  • 8Delbaen F, Grandits P, Rheinlander T, Samperi D, Schweizer M, Stricker C. Exponential hedging and entropic penalties[J]. Math Finance, 2002, 12:99-123.
  • 9Fujiwara T, Miyahara Y. The minimal entropy martingale measures for geometric L~vy processes[J]. Finance Stochast, 2003, 7(4): 509-531.
  • 10Rheinlander T. An entropy approach to the stein/stein model with correlation[J]. Finance Stochast, 2005, 9(3): 399-413.

二级参考文献2

共引文献7

同被引文献38

  • 1李玉萍,刘利敏.非交易资产未定权益的无差别定价[J].扬州大学学报(自然科学版),2005,8(3):20-22. 被引量:3
  • 2刘利敏,闫振荣.随机波动率模型的等价鞅测度[J].河南师范大学学报(自然科学版),2006,34(4):24-27. 被引量:2
  • 3RHEINL(A)NDER T.An entropy approach to the Stein and Stein model with correlation[J].Finance Stoch,2005,9(3):399-413.
  • 4GRANDITS P,RHEINLANDER T.On the minimal entropy martingale measure[J].Ann Prob,2002,30(3):1003-1038.
  • 5HODGES S D,NEUBERGER A.Optimal replication of contingent claims under transaction costs[J].Rev Furture Mark,1989,8(2):222-239.
  • 6MUSIELA M,ZARIPHOPOULOU T A.An example of indifference prices under exponential preferences[J].Finance Stoch,2004,7(8):229-239.
  • 7MUSIELA M,ZARIPHOPOULOU T A.A valuation algorithm for indifference prices in incomplete markets[J].Finance Stoch,2004,8(3):399-414.
  • 8Harrison J M,Pliska S R. Martingale and Stochasticintegrals in the Theory of Continuous Trading[ J]. Stochastic Processes and Their Applications, 1981 , 11 ( 2 ) : 215 - 260.
  • 9Musiela M, Zariphopoulou T A. An Example of Indifference Prices Under Exponential Preferences [ J ]. Finance and Stochastic ,2004,7 ( 8 ) :229 - 239.
  • 10Musiela M,Zariphopoulou T A. A Valuation Algorithm for Indifference Prices in Incomplete Markets [J].Finance Stoeh, 2005,8(3) :399 -414.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部