摘要
本文研究了随机波动率模型的最小熵鞅测度和效用无差别定价。利用动态规划方法,得到了效用无差别定价满足的偏微分方程以及效用无差别套期保值策略。利用指数效用函数的最优投资策略与最小熵鞅测度之间的关系,证明了最小熵鞅测度的存在性,并利用偏微分方程给出了最小熵鞅测度。
This paper deals with the minimal pricing concerning a stochastic volatility model. entropy martingale measure and utility indifference The classical dynamic programming approach leads to the partial differential equation that satisfies utility indifference pricing, and obtains the indifference hedging strategy. Using the relationship between the minimal entropy martingale measure and the optimal investment strategy with an exponential utility, the existence of the minimal entropy martingale measure is proved, and can be expressed in terms of the solution to the PDE.
出处
《工程数学学报》
CSCD
北大核心
2009年第1期43-50,共8页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(70871058)
江苏省教育厅高校自然科学基础研究项目(07KJD110066)
江苏省博士后科研资助计划(苏人通[2005]354-355)
关键词
随机波动率模型
最小熵鞅测度
效用无差别定价
效用无差别套期保值策略
stochastic volatility model
minimal entropy martingale measure
utility indifference pricing
utility indifference hedging