期刊文献+

分数阶微分方程耦合系统边值问题解的存在性 被引量:30

The Existence of Solution to Boundary Value Problems for a Coupled System of Nonlinear Fractional Differential Equations
下载PDF
导出
摘要 应用Green函数将微分方程边值问题可转化为等价的积分方程。近来此方法被应用于讨论分数阶微分方程边值问题正解的存在性。本文讨论非线性分数阶微分方程耦合系统的两点边值问题,应用Green函数,将其转化为等价的积分方程耦合系统,并设非线性项在无穷远处有增长条件,应用Schauder不动点定理证明解而非限于正解的存在性。 By the means of the Green's function, the boundary value problem of differential equation can be reduced to the equivalent integral equation. Recently, this method is used successfully to discuss the existence of the positive solution to boundary value problem of nonlinear fractional differential equation. This article investigates the two-point boundary value problem to a coupled system of nonlinear fractional differential equations. By applying growth conditions on the nonlinear terms, we obtain an existence result of solutions. Our analysis relies on the Schauder fixed-point theorem and the reduction of the considered problem to the equivalent coupled system of integral equations.
作者 苏新卫
出处 《工程数学学报》 CSCD 北大核心 2009年第1期133-137,共5页 Chinese Journal of Engineering Mathematics
基金 中国矿业大学(北京)课程建设基金(K070601)
关键词 耦合系统 边值问题 Caputo型分数导数 SCHAUDER不动点定理 coupled system boundary value problem Caputo's fractional derivative Schauder fixedpoint theorem
  • 相关文献

参考文献5

  • 1Bai Z B, Lii H S. Positive solutions for boundary value problem of nonlinear fractional differential equa- tion[J]. J Math Anal Appl, 2005, 311:495-505.
  • 2Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36:1-12.
  • 3Gejji V D, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equa- tions[J]. J Math Anal Appl, 2005, 301:508-518.
  • 4Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York/London/Toronto: Academic Press, 1999. vol, 198.
  • 5Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives (Theory and Applications)[M]. Switzerland: Gordon and Breach, 1993.

同被引文献116

引证文献30

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部