期刊文献+

三类势能mKdV方程解的物理结构

Physical Structures for Three Kinds of Potential mKdV Equations
下载PDF
导出
摘要 在降阶法的基础上,本文采用一种求解微分方程的数学方法,研究了两个(1+1)维势能mKdV方程和一个(2+1)维势能mKdV方程,得到了这三个方程行波解的解析表达式。对于(1+1)维具有正或负指数的mKdV方程,我们指出了波函数u的指数连同波速与方程中最高阶微分项的系数的比值一起决定着解的物理结构。 A mathematical technique based on the reduction of order for solving differential equations is developed to investigate two types of potential mKdV equations in (1 + 1) dimensions and a potential rnKdV equation in (2 + 1) dimensions. The analytical expressions of travelling wave solutions for the three equations are derived. For the (1 + 1) dimensional mKdV equation with positive or negative exponents, it is shown that the exponent of wave function u and the ratio between the wave speed and the variant coefficient of the highest differential term in the equation determine the physical structures of the solutions.
作者 陈静 赖绍永
出处 《工程数学学报》 CSCD 北大核心 2009年第1期171-174,共4页 Chinese Journal of Engineering Mathematics
基金 西南财经大学211三期建设特色项目基金
关键词 非线性mKdV方程 显示解 紧孤子 物理结构 nonlinear mKdV equations explicit solutions compactons physical structures
  • 相关文献

参考文献8

  • 1套格图桑,斯仁道尔吉.New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov-Kuzentsov equation[J].Chinese Physics B,2006,15(6):1143-1148. 被引量:14
  • 2Dinda P, Remoissenet M. Breather compactons in nonlinear Klein-Gordon systems[J]. Phys Rev E, 1999, 60(5): 6218-6221.
  • 3Khater A H, et al. Travelling wave solutions of equations in (1+1) and (2+1) dimensions[J]. Journal of Computational and Applied Mathematics, 2002, 140:469-477.
  • 4Wazwaz A M. Analytic study on the one and two spatial dimensional potential KdV equations[J]. Chaos, Solitons and Fractals, 2007, 186:683-691.
  • 5Li B, et al. Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J]. Appl Math Comput, 2003, 146:653-666.
  • 6Zhu Z. Exact solutions for a two-dimensional KdV-Burgers equation[J]. Chinese Journal of Physics, 1996, 34(4): 1101-1105.
  • 7Liu X Q, Jiang S. The secq - tanhq method and its applications[J]. Phys Lett A, 2002, 298:253-258.
  • 8Liu X Q, et al. Soliton solutions in linear magnetic field and time-dependent laser field[J]. Communications in Nonlinear Science and Numerical Simulation, 2004, 9:361-365.

二级参考文献15

  • 1Parkes E J and Duffy B R 1996 Comput. Phys. Commun.98 288
  • 2Wang M L 1995 Phys. Left. A 199 169
  • 3Parkes E J, Duffy B R and Abbott P C 2001 Phys. Lett.A 295 280
  • 4Sirendaoreji Sun J 2003 Phys. Lett.309 387
  • 5Liu S D, Fu Z T, Liu S K and Zhao Q 2002 Acta Phys.Sin. 51 718 (in Chinese)
  • 6Fu Z T, Liu S K, Liu S D 2004 Acta Phys. Sin. 53 333 (in Chinese)
  • 7Liu S K,Fu Z T, Liu S D and Zhao Q 2002 Acta Phys.Sin. 51 10 (in Chinese)
  • 8Li D S and Zhang H Q 2003 Acta Phys. Sin. 52 2373 (in Chinese)
  • 9Chen Y, Yan Z Y, Li B and Zhang H Q 2003 Chin. Phys.12 1
  • 10Zhang J L, Ren D F, Wang M L, Wang Y M and Fang Z D 2003 Chin. Phys. 12 825

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部