期刊文献+

一类Hematopoiesis模型的唯一正周期解的存在性 被引量:1

Existence of the Unique the Positive Periodic Solution for a Class of Hematopoiesis Models
下载PDF
导出
摘要 本文考虑了一类Hematopoiesis模型,利用减算子的一个不动点定理,得到该方程存在唯一正周期解的充分条件,改进了已有文献的相应结果。特别地,本文还给出了收敛于该周期正解的迭代数列,即给出了该周期正解的近似表示。进而使本文的结果具有较大的实际应用价值。 In this paper, we consider a class of Hematopoiesis models. Using a fixed point theorem for the decreasing operator, a sufficient condition is obtained to guarantee the existence of unique positive periodic solution for the Hematopoiesis model. Furthermore, some known results are improved. In particular, we also give a successive sequence which converges to the solution. That is, approximations to the solution are given. Consequently, the results in this paper are more valuable in applications.
出处 《工程数学学报》 CSCD 北大核心 2009年第1期175-178,共4页 Chinese Journal of Engineering Mathematics
基金 山西省研究生教育创新项目基金(20061006)
关键词 Hematopoiesis模型 正周期解 不动点定理 减算子 Hematopoiesis model positive periodic solution fixed point theorem decrease operator
  • 相关文献

参考文献8

  • 1Mackey M C, Glass L. Oscillations and chaos in physiological control systems[J], Sciences, 1977, 197: 287-289.
  • 2Chen Y, Huang L. Existence and global attractivity of a positive periodic solution of a delayed periodic respiration model[J], Computers. Math, Applic, 2005, 49:677-687.
  • 3Gopalsamy K, Trofimchuk S. Almost periodic solutions of Lasota-Wazewska-Tyke-type delay differential equation[J], J Math Anal Appl, 1999, 237:106-127.
  • 4Graef J R, Gian C, Spikes P W. Oscillatron and global attractivity in a periodic delay equation[J], Canad, Math, Bull, 1996, 38:275-283.
  • 5Liu G, Zhao A, Yan J. Existence and global attractivity of unique positive periodic solutions for a Lasota- Wazewska model[J], Nonlinear Anal, 2006, 64:1737-1746.
  • 6范猛,王克.一类积分微分方程系统正周期解的存在性[J].数学学报(中文版),2001,44(3):437-444. 被引量:4
  • 7蒋达清,魏俊杰.非自治时滞微分方程周期正解的存在性[J].数学年刊(A辑),1999,20A(6):715-720. 被引量:47
  • 8Wan A, Jiang D, Xu X. A new existence theory for positive periodic solutions to functional differential equations[J], Computers Math Applic, 2004, 47:1257-1262.

二级参考文献11

  • 1李永昆,中国科学.A,1998年,28卷,2期,108页
  • 2Wang J,Proc Amer Math Soc,1997年,125卷,2275页
  • 3郭大钧,非线性常微分方程泛函方法,1995年
  • 4Wang H,J Diff Eqs,1994年,109卷,1页
  • 5Erbe H,Proc Amer Math Soc,1994年,120卷,743页
  • 6Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年
  • 7郭大钧,非线性泛函分析,1985年
  • 8Liao X,Nonlinear Anal,1997年,28卷,10期,1751--1758页
  • 9Kuang Y,J Diff Eqs,1993年,103卷,221--246页
  • 10Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年

共引文献49

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部