摘要
通过由重耦定理联系着的4价顶角进行基底改变,给出了自旋结网圈表象中的两个4价重标基,证明了它们之间的变换属于酉变换.用重耦理论的图式计算法,推出了体积算符对重标基作用可直接计算的重耦矩阵的图形表式和记号表式,并利用体积算符的本征值得到空间量子化的结果.
Using the basis change for four-valent vertices which are connected with the recoupling theorem two four-valent rescaled bases are obtained in the spin networks representation, and it is proved that the basis change is a unitary transformation. The graph and the symbol expressions of the recoupling matrix used in action of volume operator on rescaled basis are obtained with the graph calculation method. Finally the eigenvalues of the volume operator and the space quantization are discussed.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第1期158-164,共7页
Acta Mathematica Scientia
基金
湖北省自然科学基金青年杰出人材项目(2007ABB031)
教育部留学回国人员科研启动基金(教外司留24号)资助
关键词
自旋结网表象
体积算符
基底改变
重耦矩阵.
Spin networks representation
Volume operator
Basis change
Recoupling matrix.