期刊文献+

一类广义的含脉冲的n个物种竞争模型的正周期解的存在性(英文) 被引量:1

Existence of positive periodic solutions of a generalized n-species competition model with impulse
下载PDF
导出
摘要 运用一个锥中的不动点定理,讨论得到了一类广义的含脉冲的n个物种竞争模型的正周期解存在的充分条件. Using a fixed point theorem in cones, we establish verifiable sufficient conditions of the existence of positive periodic solution of a generalized competition model with impulse.
作者 邵远夫
出处 《贵州师范大学学报(自然科学版)》 CAS 2009年第1期46-51,共6页 Journal of Guizhou Normal University:Natural Sciences
基金 supported by Young Teachers Foundation of Guizhou Normal University[2008]
关键词 正周期解 脉冲锥中的不动点定理 positive periodic solution impulse fixed point theorem in cones
  • 相关文献

参考文献8

二级参考文献27

  • 1宿娟,李树勇.一类含时滞的非线性抛物型方程组的周期解[J].四川师范大学学报(自然科学版),2005,28(6):650-654. 被引量:4
  • 2王长有.含时滞的抛物型方程组周期解的存在性[J].四川师范大学学报(自然科学版),2007,30(2):204-207. 被引量:1
  • 3[1]Arditi R,Ginzburg L R,Akcakaya H R.Variation in Plankton Densities Among Lakes:a Case for Ratio-Dependent Models[J].Amer Naturalists,1991,138:1287-1296.
  • 4[2]Arditi R,Ginzburg L R.Coupling in Predator-Prey Dynamics:Ratio-Depenence[J].Journal of Theoretical Biology,1989,139:311-326.
  • 5[3]Wang Lin-lin.On Qualitative Analysis of Autonomous Predator-Prey Systems with Holing Type Ⅲ Functional Response[J].西北师范大学学报(自然科学版),2005,41(1):1-6.
  • 6[4]Zhang Shuwen,Tan Dejun,Chen Lansun.Chaos in Periodically Force Holing-Ⅱ Predator System with Impulsive Perturbations[J].Chaos,Solitons and Fractals,2006,28:367-376.
  • 7[5]Laksmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 8[6]Liu Bing,Zhang Yujuan,Chen Lansun.The Dynamical Behaviors of a Lotka-Volterra Predator-Prey Model Concerning Integrated Pest Management[J].Nonlinear Analysis:Real World Applications,2005,6:227-243.
  • 9[7]Lakmeche A,Arino O.Bifurcation of Nontrivial Periodic Solutions of Impulsive Differential Equations Arising Chemotherapeutic Treatment[J].Dynamics of Continuous,Discrete and Impulsive Systems,2000,7:265-287.
  • 10J. cui, L. chen. Permanence and extinction in logistic and Lotka-Volterra systems with diffusion [ J ]. J. Math. Anal. Appl. 2001, 258:512-535.

共引文献10

同被引文献12

  • 1Liu Z, Tan R, Chen L. On the stable periodic solutions of a delayed two-species model of facultative mutualism[J]. Appl Math Comput,2008,196:105-117.
  • 2Yan X, Li W. Physica D:Nonlinear Phenomena,2007,227:51-69.
  • 3Lakshmikantham V, Bainov D, Simeonov P. Theory of Impulsive Differential Equations[M]. Singerpore:World Scientific,1989.
  • 4Li J, Yan J. Neurocomputing,2009,72:2303-2309.
  • 5郭大钧. 非线性泛函分析[M]. 济南:山东大学出版社,1999.
  • 6Lu S, Ge W. Appl Math Comput,2003,146:195-209.
  • 7Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. New York:Academic Press,1979.
  • 8Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Boston:Kluwer Academic,1992.
  • 9杨志春.Volterra型脉冲积分微分方程解的存在性和稳定性[J].重庆师范大学学报(自然科学版),2008,25(1):1-4. 被引量:9
  • 10邵远夫,李培峦.一类脉冲延滞微分方程正周期解存在的充分条件[J].四川师范大学学报(自然科学版),2008,31(5):549-553. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部