期刊文献+

多数据库中的负关联规则挖掘技术及发展趋势 被引量:7

Mining Technology and Development Tendency of Negative Association Rule in Multi-database
下载PDF
导出
摘要 负关联规则反映了数据项之间的互斥关系,能提供很多有用的信息,在决策支持中起重要作用,但现行的挖掘算法主要是针对单一数据库的挖掘,多数据库中负关联规则的挖掘还未引起重视。该文介绍负关联规则的研究现状、主要挖掘方法以及冗余正负关联规则的修剪方法,对多数据库中关联规则挖掘研究现状和主要技术进行论述,并展望多数据库中负关联规则挖掘的发展趋势。 Negative association rules can catch mutually exclusive correlations among items and play an important role in decision-making. The current mining algorithm is mainly directed against mono-database, and mining negative association rules in multi-database do not arouse people's attention. This paper elaborates on the negative association rules of the status quo, mainly mining methods and redundant positive and negative association rules pruning methods, and then expatiates the present situation and main technology of association rules in multi-database, and developments tendency of negative association rules in multi-database is forecasted.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第5期61-63,93,共4页 Computer Engineering
基金 山东省自然科学基金资助项目(Y2007G25) 山东省优秀中青年科学家奖励基金资助项目(2006BS01017)
关键词 负关联规则 数据挖掘 多数据库 negative association rule: data mining: multi-database
  • 相关文献

参考文献16

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]//Proc. of the ACM SIGMOD'93. New York, USA: ACM Press, 1993: 207-216.
  • 2李学明,刘勇国,彭军,张伟,廖晓峰,吴中福.扩展型关联规则和原关联规则及其若干性质[J].计算机研究与发展,2002,39(12):1740-1750. 被引量:14
  • 3Brin S, Motwani R, Silverstein C. Beyond Market: Generalizing Association Rules to Correlations[C]//Proc. of the ACM SIGMOD'97. Tucson, Arizona, USA: ACM Press, 1997: 265-276.
  • 4Savasere A, Omiecinski E, Navathe S. Mining for Strong Negative Associations in a Large Database of Customer Transaction[C]//Proc. of the 14th International Conference on Data Engineering. Orlando, Florida, USA: [s. n.], 1998: 494-502.
  • 5Wu Xindong, Zhang Chengqi, Zhang Shichao. Mining both Positive and Negative Association Rules[C]//Proc. of the 19th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers. 2002: 658-665.
  • 6Zhang Chengqi. Zhang Shichao. Association Rule Mining[M]. Heidelberg, Germany: Springer-Verlag, 2002: 47-84.
  • 7董祥军,王淑静,宋瀚涛,陆玉昌.负关联规则的研究[J].北京理工大学学报,2004,24(11):978-981. 被引量:33
  • 8Dong Xiangjun, Sun Fengrong, Han Xiqing, et al. Study of Positive and Negative Association Rules Based on Multi-confidence and Chi-Squared Test[M]. Heidelberg, Germany: Springer. 2006: 100-109.
  • 9Dong Xiangjun, Niu Zhendong, Shi Xuelin, et al. Mining both Positive and Negative Association Rules from Frequent and Infrequent Itemsets[M]. Heidelberg, Germany: Springer, 2007: 122-133.
  • 10Cohen J. Statistical Power Analysis for the Behavioral Sciences [M]. New Jersey, USA: Lawrence Erlbaum Assotiates Publishers, 1988.

二级参考文献14

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[A]. Proceeding of the 1993 ACM SIGMOD International Conference on Management of Data[C]. New York: ACM Press, 1993. 207-216.
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules inlarge database[A]. Proceedings of the 1994 International Conference on VLDB[C]. San Francisco: Morgan Kaufmann Publishers, 1994. 487-499.
  • 4Wu Xindong, Zhang Chengqi, Zhang Shichao. Mining both positive and negative association rules[A]. Proceedings of the 19th International Conference on Machine Learning(ICML-2002)[C]. San Francisco: Morgan Kaufmann Publishers,2002. 658-665.
  • 5Brin S, Motwani R, Silverstein C. Beyond market: Generalizing association rules to correlations[A]. Processing of the ACM SIGMOD Conference 1997[C]. New York: ACM Press, 1997. 265-276.
  • 6Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transaction[A]. Proceedings of the IEEE 14th Int. Conference on Data Engineering[C]. Los Alamitos: IEEE-CS, 1998. 494-502.
  • 7Zhang Chengqi, Zhang Shichao. Association rule mining[M]. Heidelberg: Springer-Verlag, 2002.47-84.
  • 8Boulicaut J F, Bykowski A, Jeudy B. Towards the tractable discovery of association rules with negations[A]. Proceedings of the Fourth InternationalConference on Flexible Query Answering Systems FQAS'00[C]. Heidelberg: Physica-Verlag, 2000. 425-434.
  • 9Han J, Kamber M. Data mining: Concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers, 2000. 149-184.
  • 10Agrawal R,Imielinski T,Swami A. Mining associations between sets of items in large databases[A]. Proceeding of the 1993 ACM-SIGMOD international conference on management of data[C]. Washington:Springer-Verlag,, 1993.207-216.

共引文献56

同被引文献70

  • 1王冠,司建辉,杨昌锋.数据挖掘系统研究[J].北京工业大学学报,2005,31(4):383-387. 被引量:10
  • 2李琳,吴成东,韩中华,胡静.基于Web的数据挖掘技术[J].自动化与仪表,2007,22(2):74-77. 被引量:6
  • 3NingZhong.et al. "Peculiarity Oriented Multi-database Mining". PKDD' 99,LNA11704.1999.
  • 4Kaile Su. et al. "A logical liamework for identifying quality, knowledge from different data sources." Decision Support Systems 42.2006.
  • 5Xindong Wu. et al. "Database classification for multi-database mining". Information System 30.2005.
  • 6Ireneusz Czarnowski. "Prototype selection algorithms for distributed learing".Pattern Recognition 43.2010.
  • 7H.Liu,H.Lu,J.Yao.ldentifying Relevant Database for Multidatabase Mining.In:Proceedings Knowledge Discovery and Data of Pacific-Asia Conference on Mining. 1998.
  • 8J.Yao and H.Liu,Searching Multiple Database for Interesting Complexes.In:Proc of PAKDD. 1997.
  • 9Liu H, Lu H J, Yao J. Identifying relevant databases for multi database mining[C]//PAKDD. 1998:210-221.
  • 10Yan J, Liu N, Yang Q, et al. Mining adaptive ratio rules from distributed data sources[J]. Data Mining and Knowl- edge Discovery, 2006,12 (2-3) :249-273.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部