期刊文献+

改进NSGA-Ⅱ终止判断准则 被引量:10

A New Termination Criterion of NSGA-Ⅱ
下载PDF
导出
摘要 在基于进化算法的多目标优化中,往往是通过设置最大进化代数来确定算法何时终止。但是,如果最大进化代数设置太大,会增加许多不必要的计算量,设置太小可能得不到理想的结果。为了解决上述问题,提出一种改进的终止判断准则,通过该终止判断准则,即使在最大进化代数设置得非常大的情况下,只要连续几次获得的相隔一定进化代数的Pareto优解集的种群距离均小于给定的阈值,算法即可终止,并得到理想的结果,算法不再继续计算直到进化到最大进化代数后才终止。从仿真结果可以看出,通过终止判断准则,不仅降低了进化代数,减少了计算量,证实了新终止判断准则可行。 The termination criterion in the multiobjective optimization problem based on genetic algorithm is that if the algorithm is executed to the maximal number of generations( MAXGEN), then algorithm stops. However, if the MAXGEN is set too great, the algorithm would increase too much unnecessary computational load, and if the MAXGEN is set too small, the algorithm would not get the ideal result. In order to solve this problem, the paper presents a new termination criterion of multiobjective evolutionary algorithm. With the help of the new termination criterion, even the MAXGEN is set very great, the algorithm would stop if all of the several continuous population distance of pareto optimal solutions at a distance of some generations are less than the given value, and the ideal result is got, then there is no need to continue till the MAXGEN. The simulation shows that the improved NSGA - II not only reduces the evolution generations and decreases the computing quantity, but also gets almost the true pareto optimal front. So the new termination criterion is feasible.
出处 《计算机仿真》 CSCD 北大核心 2009年第2期196-200,共5页 Computer Simulation
基金 国家自然科学基金(60171045 60374063)
关键词 精英解 种群距离 多目标进化算法 Elitist solution Population distance Muhiobjective evolutionary algorithm
  • 相关文献

参考文献5

  • 1K Deb, A Pratap, S Agarwal nd T Meyarivan. A fast and elitist multiobjective genetic algorithm : NSGA - Ⅱ[ J ]. IEEE Trans. Evol. Comput. , 2002, 6:182 - 197.
  • 2E Zitzler, K Deb and L Thiele. Comparison of multiobjective evolutionary algorithms : Empirical results [ J ]. Evol. Comput. , 2000, 8 (2) :173 - 195.
  • 3K Deb. Multiobjective Optimization Using Evolutionary Algorithms [ M]. Chiehester, U. K. : Wiley, 2001.
  • 4J Knowles and D Come. The Pareto archived evolution strategy: A new baseline algorithm for muhiobjective optimization[ C]. In proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1999. 98 - 105.
  • 5李宏,焦永昌,张莉,王宇平.一种求解全局优化问题的新混合遗传算法[J].控制理论与应用,2007,24(3):343-348. 被引量:19

二级参考文献7

  • 1黄鵾,陈森发,周振国.基于正交试验法的小生境混合遗传算法[J].控制理论与应用,2004,21(6):1007-1010. 被引量:6
  • 2GOLDBERG D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].Reading,Ma:Addison Wesley,1989.
  • 3YAO X,LIU Y LIN G M.Evolutionary programming made faster[J].IEEE Trans on Evol Comput,1999,3(2):82-102.
  • 4LI H,JIAO Y C,WANG Y P Integrating the simplified quadratic interpolation into the genetic algorithm for solving constrained optimization problems[C]//Proc of Int Conf on Computational Intelligence and Security.Germany:Springer,2005,1:247-254.
  • 5ONDREJ H,ANNA K.Improvements of real coded genetic algorithms based on differential operators preventing premature convergence[J].Advances in Engineering Software,2004,35(1):237-246.
  • 6WANG H F,WU K Y.Hybrid genetic algorithm for optimization problems with permutation property[J].Computers & Operations Research,2004,31(4):2453-2471.
  • 7ALI M M,TOORN A,VITANEN S.A numerical comparison of some modified controlled random search algorithms[J].J of Global Optimization,1997,11(4):377-385.

共引文献18

同被引文献86

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部