期刊文献+

可分解成不可约矩阵乘积的非负矩阵(英文)

Nonnegative matrices decomposable into products of irreducible nonnegative matrices
下载PDF
导出
摘要 给出了一个n阶非负矩阵可以分解成不可约非负矩阵的乘积的充要条件.并且证明了若一个非负矩阵可分解成不可约非负矩阵的乘积,则可以做到因了个数至多是三个.所用的证明方法是构造性的,可以具体写出各个因子. This paper gave a necessary and sufficient condition for an n × n nonnegative matrix to be decomposed into a product of irreducible nonnegative matrices. It also showed that when such a decomposition is possible, the number of factors can be required to be at most three. The methods used here are constructive, and the factors can be presented.
作者 武宏琳
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期35-44,共10页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10571060)
关键词 非负矩阵 不可约矩阵 有向图 非负单项矩阵 Frobenius标准型 nonnegative matrix irreducible matrix digraph nonnegative monomial matrix Frobenius normal form
  • 相关文献

参考文献6

  • 1BAPAT R B,RAGHAVAN T E S.Nonnegative Matrices and Applications[M].Cambridge:Cambridge University Press,1997.
  • 2BRUALDI R A,RYSER H J.Combinatorial Matrix Theory[M].Cambridge:Cambridge University Press,1991.
  • 3LIU B L.Combinatorial Matrix Theory[M].Beijing:Science Press,2005.
  • 4HANS A,LIN L.Abstract Algebra[M].Beijing:Science Press,2004.
  • 5MERRIS R.Multilinear Algebra[M].Amsterdam:Gordon & Breach,1997.
  • 6SHAO J Y.Products of irreducible matrices[J].Linear Algebra and Its Applications,1985,68:131-143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部