摘要
给出了一个n阶非负矩阵可以分解成不可约非负矩阵的乘积的充要条件.并且证明了若一个非负矩阵可分解成不可约非负矩阵的乘积,则可以做到因了个数至多是三个.所用的证明方法是构造性的,可以具体写出各个因子.
This paper gave a necessary and sufficient condition for an n × n nonnegative matrix to be decomposed into a product of irreducible nonnegative matrices. It also showed that when such a decomposition is possible, the number of factors can be required to be at most three. The methods used here are constructive, and the factors can be presented.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期35-44,共10页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(10571060)