摘要
基于平衡损失的思想,对一般线性模型提出了一种全面地度量估计优良性的标准,给出了在此标准下回归系数的平衡广义最小二乘估计,并讨论了其优良性.得到了该估计为无偏估计的充分必要条件,以及在一定条件下,在均方误差损失的准则下平衡广义最小二乘估计优于最佳线性无偏估计的充分必要条件.
Based on the idea of balanced loss function, a new measuring standard for the estimations of uperiorities was proposed for general linear models. Under the new standard, the balanced generalized LS estimation of the regressive coefficient was derived. The necessary and sufficient condition for its unbiasedness was discussed and its superiority over BLUE in terms of the mean square error matrix criterion was studied.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期66-71,125,共7页
Journal of East China Normal University(Natural Science)
基金
国家社会科学基金(07CTJ001)
国家自然科学基金(10701021)
浙江省哲学与社会科学规划项目(06CGYJ21YQB)
浙江财经学院重大课题(2008YJZ06)
关键词
线性模型
参数估计
平衡LS估计
均方误差矩阵
最佳线性无偏估计
linear model
parameter estimation
mean square error matrix criterion
balanced LS estimation
best linear unbiased estimation